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Abstract A nonlinear control is proposed for trajectory track-ing
of a 6-DOF model-scaled helicopter with constraints on main
rotor thrust and fuselage attitude. In the procedure of con-trol
design, the mathematical model of helicopter is simplified into
three subsystems: altitude subsystem, longitudinal-lateral
subsystem and attitude subsystem. The proposed control is 
developed by combining the sub-controls for the correspond-ing
subsystems. The sub-controls for altitude subsystem and
longitudinal-lateral subsystem are designed with hyperbolic tan-
gent functions to satisfy the constraints; the sub-control for 
attitude subsystem is based on backstepping technique such that
fuselage attitude tracks the virtual control for longitudinal-lateral
subsystem. It is proved theoretically that tracking errors are
ultimately bounded, and control constraints are satisfied.
Performances of the proposed controller are demonstrated by 
simulation results.
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Trajectory tracking control design for a 6-DOF au-
tonomous model-scaled helicopter has becomes an inter-
esting and challenging task in recent years, because of the

nonlinearities and couplings in its dynamic model[1−2]. Some 
representative researches include linear control[3], ap-
proximate feedback linearization[2], backstepping[4−5], ro-
bust H∞ control[6−7], composite nonlinear feedback[8], and 
model predictive control[9].

Traditionally, nonlinear trajectory tracking controls for
helicopters are mainly based on some assumptions: 1) con-
stant rotational rate of rotors, 2) simplified expressions for
rotor thrusts in case of low fuselage velocity and acceler-
ation, and 3) negligence of small coupling terms (or small
body forces). To support the assumptions, however, some
other significant issues require further consideration. The
desired main rotor thrust should be subjected to saturation;
otherwise, excessively large main rotor thrust would result
in large acceleration of the fuselage, and the simplified ex-
pressions for rotor thrusts are unreasonable. Besides, large
rotor thrust requires large collective pitch, increasing drag
forces exerted on the rotor blades and deteriorating the as-
sumption of constant rotational rate. Moreover, attitude of
the fuselage should be bounded securely for the reason that
aggressive attitude often leads to uncontrollability in case of
constraint on rotor thrust.

Many early works on saturated control[10−13] pre-
sented the fundamental principles and applications. Sat-
urated control for nonlinear systems was then devel-
oped and summarized[14−17]. Saturated control strate-
gies were applied to some specific projects, such as 3-
DOF VTOL aircraft[18−19], linear motor system[20], and
inverted pendulum[21]. However, researches on saturated
control for trajectory tracking of 6-DOF helicopter were
relatively rare. Controllers for helicopters subject to input
constraints were often designed partially saturated[4, 22−23]

due to nonlinearities and couplings in mathematical mod-
eling.

Generally, saturated control are designed by using non-
smooth saturation functions, which impedes analytical so-
lution for derivatives of virtual controls, and application
of Barbalat lemma to stability analysis. To overcome the
troubles resulted from non-smooth saturation functions, it
is necessary to apply some smooth saturation functions.
Recently, a smooth hyperbolic saturated control has been
designed for a 3-DOF VTOL aircraft[18]; stability results
of the closed-loop system were simple to prove, and the
control algorithm was easy to implement.

Enlightened by the simple smooth saturated control for
3-DOF aircraft[18], we propose a nonlinear control based
on smooth saturation function for a fully 6-DOF model-
scaled helicopter under constraints of main rotor thrust and
fuselage attitude. The constraints are addressed by using
bounded and continuously differentiable hyperbolic tangent
functions. The full nonlinear model of the helicopter plant
is divided into three subsystems, and the proposed control
is designed by combining the sub-controls developed for the
corresponding subsystems. The main contributions of this
paper include: 1) The result of a 3-DOF (lateral, altitude

and roll) VTOL aircraft[18] is extended to a 6-DOF he-
licopter; 2) Exponential stability and local input-to-state

stability (LISS)[24] of the smooth saturated control sys-
tem are discussed in detail; 3) Neglected coupling terms
are considered theoretically in the stability analysis of the
closed-loop system; 4) Time derivatives of virtual controls
are presented in explicit forms without using differentiators
to reduce the amount of calculation significantly.

This paper is organized as following: some useful prelim-
inaries are reviewed in Section 1; the problem of trajectory
tracking for helicopter subject to constraint on main ro-
tor thrust and fuselage attitude is formulated in Section
2; detailed control design procedure is proposed in Section
3; the stability concerning the closed-loop system with ne-
glected terms is analyzed in Section 4; simulation results
are presented in Section 5 to illustrate the performances of
the designed controller; this paper is concluded in Section
6.

1 Theoretical preliminaries

Throughout this paper, |·| is defined as the absolute value
for real numbers; ‖ · ‖ is defined as the Euclidean norm for
vectors, and the induced Euclidean norm for matrices.

The conventional non-smooth saturation function is
given by

satε(x) =

{
x, if |x| < ε
ε, if |x| ≥ ε

which often brings the difficulties of 1) solving analytically
the derivatives of the virtual control, and 2) applying Bar-
balat lemma to the stability analysis. To overcome such
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troubles, the hyperbolic tangent function

tanh(s) :=
es − e−s

es + e−s
(1)

is utilized as the saturation function in this paper. As the
saturation function, the hyperbolic tangent function is con-
tinuously differentiable. Some properties of the hyperbolic
function are listed in Appendix.

The main theoretical results of this paper are based on
the following proposition[18].

Proposition 1. The non-trivial solution of system
{

γ̇1 = γ2

γ̇2 = −α tanh(kγ1 + lγ2)− β tanh(lγ2)
(2)

is globally asymptotically stable for any positive numbers
α, β, k and l.

In this paper, Proposition 1 is extended into a vector
form. Before the extension, it is necessary to define the
vector hyperbolic function.

Definition 1. The hyperbolic tangent function for vec-
tor xxx = [x1, · · · , xn]T is given by

tanh(xxx) := [tanh(x1), · · · , tanh(xn)]T

Proposition 1 can be extended into a vector form as be-
low.

Proposition 2. Consider the vector form of system (2):
{

ξ̇ξξ1 = ξξξ2

ξ̇ξξ2 = −αtanh(kξξξ1 + lξξξ2)− βtanh(lξξξ2)
(3)

where ξξξ1 ∈ Rn and ξξξ2 ∈ Rn. The non-trivial solution
of system (3) is globally asymptotically stable and semi-
globally exponentially stable for any positive numbers α,
β, k and l.

Proof of Proposition 2 is presented in Appendix.
Suppose that system (3) is perturbed by a bounded dis-

turbance ∆∆∆ with ‖∆∆∆‖ < ∆̄:
{

ξ̇ξξ1 = ξξξ2

ξ̇ξξ2 = −αtanh(kξξξ1 + lξξξ2)− βtanh(lξξξ2) + ∆∆∆
(4)

The stability property of system (4) can be given in the
following proposition.

Proposition 3. Consider the perturbed system (4) with
ξξξ1 ∈ Rn and ξξξ2 ∈ Rn. Let the expected region of attraction
be {

[ξξξT
1 , ξξξT

2 ]T
∣∣∣
∥∥∥[kξξξT

1 + lξξξT
2 , lξξξT

2 ]
∥∥∥ < µ̄, µ̄ > 0

}

Then, there exists ∆̄ > 0, such that for ‖∆∆∆‖ < ∆̄ and
positive numbers α, β, k and l, the non-trivial solution of
(4) is ultimately bounded.

Proof of Proposition 3 is presented in Appendix.
Remark 1. Under the corresponding definitions in some

previous literature[24], the result in Proposition 3 is named
local input-to-state stability (LISS) with respect to the per-
turbation ∆∆∆.

2 Problem statement
2.1 Mathematical modeling for a model-scaled he-

licopter

In this paper, the mathematical model of a model-scaled
helicopter presented in our previous research[25] is em-
ployed. A simple structure of the model-scaled helicopter
is illustrated by Fig. 1 where the two reference frames are
defined for mathematical modeling.

Fig. 1 A simple illustration of the model-scaled helicopter:
reference frames, rotor thrusts and flapping angles

The earth reference frame (ERF) is fixed to the earth,
with the origin locating at a fix point on the ground. The
x axis points to the north and the z axis points upright.
The y axis can be confirmed by the right-hand rule.

The fuselage reference frame (FRF) is fixed to the he-
licopter fuselage. The origin locates at the c.g. (center
of gravity) of the helicopter′s fuselage, with the xb axis
pointing to the head of the helicopter. The zb axis is per-
pendicular to the xb axis and points upright. The yb axis
can be confirmed by the right-hand rule.

The mathematical model of the model-scaled helicopter
could be derived from the Newton-Euler equations[2, 4]:

ṗpp = vvv (5)

mv̇vv = −mggg3 + R(γγγ)fff (6)

Ṙ(γγγ) = R(γγγ)S(ωωω) (7)

Jω̇ωω = −S(ωωω)Jωωω + τττ (8)

where ppp := [x, y, z]T and vvv := [u, v, w]T are position and
velocity of the c.g. of the helicopter in ERF, respectively;
m denotes the gross mass; ggg3 := [0, 0, g]T, and g is the grav-
itational acceleration; γγγ := [φ, θ, ψ]T denotes the attitude
of the fuselage; the rotational matrix is given by

R = [Rij ] :=




cθcψ cψsθsφ− cφsψ cφcψsθ + sφsψ
cθsψ sψsθsφ + cφcψ cφsψsθ − sφcψ
−sθ cθsφ cθcφ




where c(·) and s(·) stand for cos(·) and sin(·), respectively;
ωωω := [p, q, r]T represents the angular velocity in FRF; S(·)
denotes the skew-symmetric matrix such that S(ωωω)Jωωω =
ωωω × Jωωω; the inertial matrix is given by

J :=




Ixx 0 −Ixz

0 Iyy 0
−Ixz 0 Izz




The resultant force fff and torque τττ exerted on the fuselage
in FRF are given by

fff :=




Tmsas

−Tmsbs + Tt

Tmcbscas


 (9)

τττ :=




Tmhmsbs + Ttht + Qmsas

Tmlm + Tmhmsas + Qt −Qmsbs

−Tmlmsbs − Ttlt + Qmcascbs


 (10)
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where Tm, Qm, Tt and Qt represent thrusts and counterac-
tive torques generated by the main rotor and the tail rotor,
respectively; hm, ht, lm and lt are the vertical and horizonal
distances between the c.g. of the helicopter and centers of
the rotors, respectively; as and bs are the longitudinal and
lateral flapping angles, respectively. The flapping dynamics
is negligible in this research since it is extremely fast when
compared with the fuselage dynamics. The expressions of
rotor thrusts with respect to collective pitches[26] are given
by

Ti = tciρsiAiΩ
2
i R

2
i (11)

tci =
1

4

[
−ai

4

√
si

2
+

√
a2

i si

32
+

2

3
aiθi

]2

(12)

and the expressions for torques are given by

Qi = qciρsiAiΩ
2
i R

3
i (13)

qci =
δd

8
+ 1.13t

3
2
ci

√
si

2
(14)

where subscripts i = m and t represent the main rotor and
the tail rotor accordingly; θi is collective pitch of the main
or tail rotor; ρ, si, ai, Ωi, Ai and Ri denote the density of
the local air, solidity of the rotor disc, slope of the lift curve,
rotational rate of rotors, area and radius of the rotor disc,
respectively; δd is the drag coefficient of the rotor which
often has a typical value of 0.012[26].

The mathematical model implies that the motion of the
helicopter is controlled by actual controls θm, θt, as and bs.

2.2 Control objective

In this research, the reference trajectory pppr =
[xr, yr, zr]

T to be tracked is smooth, and its derivatives

ppp(i)
r (i = 1, 2, 3, 4) are bounded. The objective is to design

a trajectory tracking controller such that
1) The closed-loop system can track the smooth reference

trajectory pppr within bounded errors;
2) The main rotor thrust and the attitude satisfy

Ut < Tm < UT (15)

|φ| < Uφ, |θ| < Uθ (16)

where Ut < mg < UT cUφcUθ.

3 Controller design

The strategy of the controller design can be explained
as follows: 1) the helicopter model is simplified into three
subsystems, including the altitude subsystem, longitudinal-
lateral subsystem and attitude subsystem; 2) a saturated
thrust Tm is designed to stabilize the altitude tracking
error; 3) a saturated virtual control for the longitudinal-
lateral subsystem is designed based on the saturated control
thrust; 4) the torque τττ is designed such that the attitude of
the fuselage tracks the virtual control for the longitudinal-
lateral subsystem. The derivatives of the virtual control
are given in explicit forms, and actual controls θm, θt, as

and bs are calculated in the last part of this section.

3.1 Model simplification and transformation

Some simplifications of the helicopter model are required
to facilitate the controller design. Since the cyclic flapping
angles and the tail rotor thrust are fairly small according
to the physical properties of the helicopter[2, 22, 23], it is
reasonable to take

fff ≈ [0, 0, Tm]T (17)

in (9) for simplifying the model, and it follows that

mv̇vv = −mggg3 + RRR3(γγγ)Tm (18)

where RRR3 denotes the third column of R(γγγ), and ‖RRR3‖ = 1.
Replacing (6) with (18) enables the helicopter model to
appear cascaded.

The counteractive torque of the tail rotor Qt contributes
a tiny part of τττ , and is also negligible; consequently, torque
τττ in (10) can be simplified by

τττ = QAτττA + τττB (19)

where τττA := [Tt, as, bs]
T,

QA =




ht Qm Tmhm

0 Tmhm −Qm

−lt 0 −Tmlm


 , τττB =




0
Tmlm
Qm




Based on (17) and (19), the helicopter model can be
devided into three subsystems.

1) The altitude subsystem is obtained by extracting the
third equations from (5) and (18):

{
ż = w

mẇ = −mg + cθcφTm
(20)

2) The longitudinal-lateral subsystem is composed of the
rest parts of (5) and (18):

{
˙̄ppp = v̄vv

m ˙̄vvv = TmR̄RR3
(21)

where p̄pp := [x, y]T, v̄vv := [u, v]T, and R̄RR3 := [R13, R23]
T.

3) The attitude subsystem is

˙̄RRR3 = R̂ω̄ωω (22)

ψ̇ =
sφ

cθ
q +

cφ

cθ
r (23)

Jω̇ωω = −S(ωωω)Jωωω + τττ (24)

where ω̄ωω := [p, q]T; torque τττ is given by the simplified ex-
pression (19), and

R̂ :=

[ −R12 R11

−R22 R21

]
= [eee1, eee2]

TR[−eee2, eee1]

eee1 := [1, 0, 0]T, eee2 := [0, 1, 0]T

The invertibility of R̂ can be proved straightforwardly by

calculating that det(R̂) = −R12R21 + R11R22 6= 0.
Enlightened by [4], we use (22) and (23) to represent the

attitude kinematics, where (22) is given by extracting the
first two rows from (7), and (23) is the yaw kinematics.

With γγγR := [R̄RR
T
3 , ψ]T, the Jacobian matrix satisfies

‖∂γγγR/∂γγγ‖ = cθ > 0 in the case of |θ| < π/2. Consequently,
the mapping from γγγ to γγγR is a local topological homeomor-
phism, indicating (22) and (23) are capable of representing
the attitude kinematics under |θ| < π/2. It will be shown
that under the proposed control, θ can be maintained in
this range.
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3.2 Saturated control for altitude subsystem

Define ze := z− zr and we := w− żr. Based on (20), the
error dynamics of the altitude subsystem can be given by

{
że = we

ẇe = −g + cθcφ
m

Tm − z̈r
(25)

Proposition 4. Consider the altitude error subsystem
(25) with the reference altitude zr satisfying

Ut

m
− g + kz + kw < |z̈r| < UT

m
− g − kz − kw (26)

Let the expected region of attraction be given by

{
[ze, we]

T |‖[azze + awwe, awwe]‖ < z̄, z̄ > 0}

If the positive control parameters kz, az, kw and aw are
designed such that

min

[
kz + kw,

z̄χz

kzaw
,

z̄χz

kwaw + az
aw

]
>

∣∣∣∣
cUφcUθ − 1

m
UT

∣∣∣∣

where χz = min
[

k2
zaw tanh(z̄)2

z̄2 , kwaz tanh(z̄)2

aw z̄2

]
, then the

thrust

Tm = m (g + z̈r − kz tanh(azze + awwe)− kw tanh(awwe))
(27)

assures the following statements:
1) The altitude tracking error ze is ultimately bounded,

if |φ| < Uφ and |θ| < Uθ;
2) The constraint given by (15) is satisfied.
Proof.
1) Substituting (27) into (25) yields

{
że = we

ẇe = −kz tanh(azze + awwe)− kw tanh(awwe) + δz

(28)

where |δz| <
1−cUφcUθ

m
UT . Following the steps of Proposi-

tion 3 can complete the proof.
2) Satisfaction of constraint (15) can be proved by sub-

stituting (26) into (27). ¤
Remark 2. The implication of (26) is intuitive. If the

control force is subject to constraints, the acceleration is
obviously limited.

Remark 3. If φ = θ = 0, substituting (27) into (25)
yields

{
że = we

ẇe = −kz tanh(azze + awwe)− kw tanh(awwe)
(29)

which satisfies the requirements of Proposition 2, and can
be proved to be globally asymptotically stable and semi-
globally exponentially stable.

3.3 Saturated control for longitudinal-lateral sub-
system

Define p̄ppr := [xr, yr]
T, p̄ppe := p̄pp − p̄ppr, v̄vve := v̄vv − ˙̄pppr, and

R̄RR3e := R̄RR3− ᾱααP , where ᾱααP is the virtual control. Based on
(21), the error dynamics of the longitudinal-lateral subsys-
tem can be given by

{
˙̄pppe = v̄vve

˙̄vvve = Tm
m

ᾱααP + Tm
m

R̄RR3e − ¨̄pppr
(30)

Proposition 5. Consider the longitudinal-lateral error
subsystem (30) with the reference longitudinal-lateral tra-
jectory satisfying

‖¨̄pppr‖ <
UtMR

m
−
√

2kp −
√

2kv (31)

where kp > 0, kv > 0, and MR > 0. Let the expected
region of attraction be given by

{
[p̄ppT

e , v̄vvT
e ]T

∣∣∣
∥∥∥[app̄pp

T
e + avv̄vv

T
e , avv̄vv

T
e ]

∥∥∥ < p̄, p̄ > 0
}

where av > 0 and ap > 0. Denote

δR := min

[
m(kp + kv)

UT
,

mp̄χp

kpavUT
,

mp̄χp

(kvav +
ap

av
)UT

]
(32)

where χp = min

[
k2

pav tanh(p̄)2

p̄2 ,
kvap tanh(p̄)2

av p̄2

]
, and set the

control parameters such that arcsin(MR + δR) < Uφ and
arcsin(MR + δR) < Uθ. If the attitude tracking error satis-
fies ‖R̄RR3e‖ < δR, then the virtual control

ᾱααP =
m

Tm

(
¨̄pppr − kptanh(app̄ppe + avv̄vve)− kvtanh(avv̄vve)

)

(33)

guarantees the following statements:
1) The tracking error p̄ppe is ultimately bounded;
2) The constraints given by (16) are satisfied.
Proof.
1) Substitution of (33) into (30) yields





˙̄pppe = v̄vve

˙̄vvve = −kptanh(app̄ppe + avv̄vve)− kvtanh(avv̄vve)+
Tm
m

R̄RR3e

where the boundedness of R̄RR3e is assumed by (32), and the
boundedness of Tm is proved in Proposition 4. The ultimate
boundedness of p̄ppe can be proved by using the results of
Proposition 3.

2) Substituting (31) into (33) yields

‖ᾱααP ‖ <
m

Ut

(
‖p̈ppr‖+

√
2kp +

√
2kv

)
< MR

implying that

(MR + δR)2 >‖R̄RR3‖2 = R2
31 + R2

32 =

(cφcψsθ + sφsψ)2 + (cφsψsθ − sφcψ)2 =

c2φs2θ + s2φ

On the one hand,

(MR + δR)2 > c2φs2θ + s2φ ≥ s2φ

indicating |φ| ≤ arcsin(MR + δR), on the other hand

(MR + δR)2 > c2φs2θ + s2φ ≥ c2φs2θ + s2φs2θ = s2θ

implying that |θ| ≤ arcsin(MR + δR). Consequently, by
setting arcsin(MR + δR) < Uφ and arcsin(MR + δR) < Uθ,
the constraint for attitude is satisfied. ¤

Remark 4. When R̄RR3e = 0, substituting (33) into (30)
yields

{
˙̄pppe = v̄vve

˙̄vvve = −kptanh(app̄ppe + avv̄vve)− kvtanh(avv̄vve)
(34)

It satisfies conditions of Proposition 2, indicating that p̄ppe is
globally asymptotically stable and semi-globally exponen-
tially stable.
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3.4 Backstepping design for attitude subsystem

In the preceding subsections, we have obtained the main
rotor thrust Tm and the virtual control ᾱααP . The main rotor
thrust Tm can be implemented, while ᾱααP is the reference
signal to be tracked by the attitude subsystem.

Select the Lyapunov candidate

L2 =
1

2
R̄RR

T
3eR̄RR3e +

kγi

2

∫ t

0

R̄RR
T
3edt

∫ t

0

R̄RR3edt

where kγi > 0 are the parameters to be designed. Its deriva-
tive

L̇2 = R̄RR
T
3e

˙̄RRR3e + kγiR̄RR
T
3e

∫ t

0

R̄RR3edt =

R̄RR
T
3e(

˙̄RRR3 − ˙̄αααP ) + kγiR̄RR
T
3e

∫ t

0

R̄RR3edt =

R̄RR
T
3e(R̂ω̄ωω − ˙̄αααP ) + kγiR̄RR

T
3e

∫ t

0

R̄RR3edt

Define ω̄ωωe := ω̄ωω − ᾱααR, where ᾱααR denotes the virtual con-
trol for attitude kinematics. With the virtual control for
attitude kinematics designed by

ᾱααR = R̂−1

(
−kγpR̄RR3e − kγi

∫ t

0

R̄RR3edt + ˙̄αααP

)
(35)

where kγp > 0 and kγi > 0 are control parameters, the
derivative of L2 is then calculated by

L̇2 = R̄RR
T
3e(R̂αααR + R̂ω̄ωωe − ˙̄αααR) + kγiR̄RR

T
3e

∫ t

0

R̄RR3edt =

− kγpR̄RR
T
3eR̄RR3e + R̄RR

T
3eR̂ω̄ωωe

Before the backstepping design for the attitude dynam-
ics, the controller for the yaw angle ψ should be designed.
The reference yaw angle ψr is designed by

ψr = atan2(ẏr, ẋr) (36)

such that the helicopter head always points to the tangent
of the reference trajectory.

Consider the yaw angle kinematics given by (23), where
r is regarded as the virtual control. Define ψe := ψ − ψr

and choose the Lyapunov candidate

L3 = L2 +
1

2
ψ2

e +
kψi

2

(∫ t

0

ψedt

)2

It follows that

L̇3 =L̇2 + ψeψ̇e + kψiψe

∫ t

0

ψedt =

L̇2 + ψe(ψ̇ − ψ̇r) + kψiψe

∫ t

0

ψedt =

L̇2 + ψe(
sφ

cθ
q +

cφ

cθ
r − ψ̇r) + kψiψe

∫ t

0

ψedt

If the virtual control αψ = r − re is designed by

αψ =
−sφ

cφ
q − cθ

cφ

(
kψpψe + kψi

∫ t

0

ψedt− ψ̇r

)
(37)

where kψp > 0 and kψi > 0 are control parameters, then

L̇3 = −kγpR̄RR
T
3eR̄RR3e − kψpψ2

e + R̄RR
T
3eR̂ω̄ωωe +

cφ

cθ
ψere

Define the reference signals to be tracked by the attitude
dynamics as

αααR := [ᾱααT
R, αψ]T (38)

Define also the tracking error of attitude dynamics as

ωωωe := [ω̄ωωT
e , re]

T = ωωω −αααR (39)

Select the Lyapunov candidate

L4 = L3 +
1

2
ωωωT

e Jωωωe +
kωi

2

∫ t

0

ωωωT
e dt

∫ t

0

ωωωedt

Its derivative is

L̇4 = L̇3 + ωωωT
e Jω̇ωωe + kωiωωω

T
e

∫ t

0

ωωωedt =

L̇3 + ωωωT
e (−S(ωωω)Jωωω + τττ − Jα̇ααR) + kωiωωω

T
e

∫ t

0

ωωωedt

Design the torque as

τττ = S(ωωω)Jωωω + Jα̇ααR − kωpωωωe − kωi

∫ t

0

ωωωedt−Gγγ̄γγe (40)

where

Gγ =

[
R̂ 02×1

01×2
cφ
cθ

]

and γ̄γγe := [R̄RR
T
3e, ψe]

T. kωp > 0 and kωp > 0 are the control
parameters. Then,

L̇4 = −kγpR̄RR
T
3eR̄RR3e − kψpψ2

e − kωpωωω
T
e ωωωe ≤ 0 (41)

implying that the backstepping process is completed.
Proposition 6. Consider the attitude subsystem given

by (22), (23) and (24). Under the controller designed by
(35), (37), (38) and (40), the attitude of the helicopter
fuselage can track ᾱααP and ψr exponentially.

Proof. Take L4 as the Lyapunov function for the atti-
tude subsystem. The derivative of L4 can be given by (41),
implying that R̄RR3e ∈ L2 ∩L∞ and ψe ∈ L2 ∩L∞. Since all
signals are uniformly continuous, R̄RR3e and ψe are asymp-
totically stable according to the Barbalat lemma. Further,
R̄RR3e and ψe are exponentially stable because L4 and L̇4 are
in quadratic forms. ¤
3.5 Derivatives of virtual control

Prohibitive expressions for derivatives of the virtual con-
trol often impede applications of backstepping control to
high order systems. In this research, however, the explicit
expressions can be obtained for derivatives of the virtual
controls ˙̄αP and α̇R without in (35) and (40), avoiding the
use of numerical differentiators.

The derivatives for Tm are calculated by

Ṫm = m

[
z(3)

r − kw
d tanh(awwe)

d(awwe)
(awẇe) −

kz
d tanh(azze + awwe)

d(azze + awwe)
(az że + awẇe)

] (42)

T̈m = m

[
z(4)

r − kz
d2 tanh(azze + awwe)

d(azze + awwe)2
(az że + awẇe)

2 −

kz
d tanh(azze + awwe)

d(azze + awwe)
(az z̈e + awẅe)−

kw
d2 tanh(awwe)

d(awwe)2
(awẇe)

2 − kw
d tanh(awwe)

d(awwe)
(awẅe)

]

(43)
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where z̈e = ẇe = Tm
m
− g − z̈r, and ẅe = Ṫm

m
− z

(3)
r .

Taking rrr1 = ¨̄pppr − kptanh(app̄ppe + avv̄vve) − kvtanh(avv̄vve)
and r̄1 = 1/Tm yields that ᾱααP = mr̄1rrr1. It follows that

˙̄αααP = m
(
˙̄r1rrr1 + r̄1ṙrr1

)
(44)

¨̄αααP = m
(
¨̄r1rrr1 + 2 ˙̄r1ṙrr1 + r̄1r̈rr1

)
(45)

The derivatives for r̄1 are given by

˙̄r1 = − 1

T 2
m

Ṫm, ¨̄r1 = − 1

T 2
m

T̈m +
2

T 3
m

Ṫm

where Ṫm and T̈m are obtained by (42) and (43), respec-
tively. The derivatives of rrr1 are given by

ṙrr1 = p̄pp(3)
r − kv

dtanh(avv̄vve)

d(avv̄vve)
(av ˙̄vvve)−

kp
dtanh(app̄ppe + avv̄vve)

d(app̄ppe + avv̄vve)
(ap ˙̄pppe + av ˙̄vvve)

(46)

r̈rr1 = p̄pp(4)
r − kv

dtanh(avv̄vve)

d(avv̄vve)
(av ¨̄vvve)−

kv
d2tanh(avv̄vve)

d(avv̄vve)2
(av ˙̄vvve)

2−

kp
d2tanh(app̄ppe + avv̄vve)

d(app̄ppe + avv̄vve)2
(ap ˙̄pppe + av ˙̄vvve)

2−

kp
dtanh(app̄ppe + avv̄vve)

d(app̄ppe + avv̄vve)
(ap¨̄pppe + av ¨̄vvve)

(47)

where ¨̄pppe = ˙̄vvve = −¨̄pppr + Tm
m

R̄RR3, and ¨̄vvve = −p̄pp(3)
r + Ṫm

m
R̄RR3 +

Tm
m

˙̄RRR3. The derivative of the vector hyperbolic function
with respect to vector is defined in Definition A2 in Ap-
pendix.

Next, the derivative of the virtual control for ᾱααR can be
yielded by

˙̄αααR =

[
d

dt

(
R̂−1

)]
R̂ᾱααR+

R̂−1
(
−kγp

˙̄RRR3e − kγiR̄RR3e + ¨̄αααP

)
=

− R̂−1 ˙̂
RᾱααR + R̂−1

(
−kγp

˙̄RRR3e − kγiR̄RR3e + ¨̄αααP

)
(48)

where

˙̂
R = [eee1, eee2]

TRS(ωωω)[−eee2, eee1],
˙̄RRR3e = R̂ω̄ωω − α̇ααP

and ¨̄αααP is obtained by (45). The derivative of the virtual
control for yaw angle can be acquired by

α̇ψ =− φ̇q

c2φ
− sφ

cφ
q̇ − cθ

cφ

(
kψpψ̇e + kψiψe − ψ̈r

)
+

sθcφθ̇ + cθsφφ̇

c2φ

(
kψpψe + kψi

∫ t

0

ψedt− ψ̇r

) (49)

where

ψ̇r =
ẍr ẏr − ẋr ÿr

ẋ2
r + ẏ2

r

ψ̈r =
(
...
x r ẏr − ẋr

...
y r)

(
ẋ2

r + ẏ2
r

)

(ẋ2
r + ẏ2

r)2
−

(ẍr ẏr − ẋr ÿr) (2ẋrẍr + 2ẏr ÿr)

(ẋ2
r + ẏ2

r)2

ψ̇e =
sφ

cθ
q +

cφ

cθ
r − ψ̇r

In (49), φ̇ and θ̇ are given by

γ̇γγ = R−1
r ωωω

where

Rr :=




1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ




is the transformation matrix for the attitude from ERF to
FRF.

In summary, the derivative of virtual control for ᾱααP is
obtained by (44), and the derivative of virtual control for
αR is yielded by

α̇ααR = [ ˙̄αααT
R, α̇ψ]T (50)

where derivatives ˙̄αααR and α̇ψ are calculated by (48) and
(49), respectively.

Remark 5. Actually, α̇ααP and α̈ααP are bounded. In the
expressions for derivatives of virtual controls, all the first-
order and second-order partial derivatives of hyperbolic
tangent functions are bounded, as are given in Property
A2 in Appendix. The derivatives of reference trajectory are
bounded, as are stated in the control objective. The deriva-
tives of tracking errors are bounded, since the closed-loop
expressions are composed of hyperbolic tangent functions.

3.6 Calculating the actual controls

In the previous subsections, the control thrust Tm and
torque τττ are obtained by (27) and (40). Consequently, the
actual controls θm, θt, as, and bs can be calculated from
the thrust and torque through the following steps.

θm can be obtained from (11):

tcm =
Tm

ρsmAmΩ2
mR2

m

, θm =
3

2

[√
smtcm

2
+

4tcm

am

]
(51)

and Qm is determined by

qcm =
δ

8
+ 1.13t

3
2
cm

√
sm

2
, Qm = qcmρsmAmΩ2

mR3
m

Then, τττA = [Tt, as, bs]
T can be calculated by using (19)

τττA = Q−1
A (τττ − τττB) (52)

In (52), the invertibility of QA can be proved by

det QA = ltQ
2
m + (hmlt − htlm)hmT 2

m 6= 0

where hm À lm and lt À ht, according to the physical
structure of typical helicopters.

And the collective pitch of the tail rotor is yielded by

tct =
Tt

ρstAtΩ2
t R

2
t

, θt =
3

2

[√
sttct

2
+

4tct

at

]
(53)

4 Analysis on closed-loop system
In this section, a stability analysis is provided for the

closed-loop system with neglected terms. In advance, the
main rotor thrust and fuselage attitude are proved to satisfy
constraints (15) and (16).

In Subsection 3.1, the forces and torques are simplified
such that the helicopter model appears cascaded. The small
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neglected terms can be explicitly written by

∆∆∆f =




Tmsas

−Tmsbs + Tt

Tm(cascbs − 1)


 (54)

∆∆∆τ :=




Qm(sas − as) + Tmhm(sbs − bs)
Qt −Qm(sbs − bs) + Tmhm(sas − as)
−Qm(1− cascbs) + Tmlm(bs − sbs)


 (55)

which are functions of actual controls. It is noticeable that
if as = 0 and bs = 0, there are ‖∆∆∆f‖ = |Tt| and ‖∆∆∆τ‖ =
|Qt|. The tail rotor thrust Tt is bounded, because |Tt| ¿
|Tm| < UT . The tail rotor torque Qt can be proved bounded
by considering (11)∼(14). Meanwhile, cyclic pitch angles
as and bs are responsible for manipulating pitch and roll
motion of the fuselage, so that they are functions of ζζζ :=
[‖R̄RR3e‖, |ψe|, ‖ωωωe‖]T. As given in some literature[1−2, 22], ∆∆∆f

and ∆∆∆τ are very small; consequently, some conservative
bounds on ∆∆∆f and ∆∆∆τ can be estimated as

‖∆∆∆f‖ < lv‖ζζζ‖+ ∆̄f , ‖∆∆∆τ‖ < lω‖ζζζ‖+ ∆̄τ (56)

where lv, lω, ∆̄f and ∆̄τ are small positive numbers. In
(56), the non-vanishing terms ∆̄f and ∆̄τ concern the val-
ues of |Tt| and |Qt|, which are very small according to the
physical properties of typical helicopters. The vanishing
terms lv‖ζζζ‖ and lω‖ζζζ‖ depend on the fact that ∆∆∆f and ∆∆∆τ

are related to the attitude tracking errors.
Proposition 7. Consider the helicopter plant (5)∼(8),

with forces and torques given by (9) and (10). Suppose
that the reference trajectories satisfy (26) and (31). If the
controller is designed by (27), (33), (35), (37), (38), (40),
(44), (45), (48)∼(50) and (51)∼(53), then

1) The main rotor thrust satisfies constraint (15);
2) The fuselage attitude satisfies constraint (16) after a

finite time;
3) Tracking errors ze and p̄ppe are ultimately bounded.
Proof. Substituting (26) into (27) proves 1) directly.
The virtual control expressed by (33) is bounded, be-

cause of the bounded Tm and reference signal satisfying
(31). Take L4 as the Lyapunov function for the attitude
subsystem. Based on Proposition 6, the derivative of L4 is
given by

L̇4 <− kmin‖ζζζ‖2 + lω‖ζζζ‖2 + ∆̄τ‖ζζζ‖ =

− (kmin − lω)‖ζζζ‖2 + ∆̄τ‖ζζζ‖

where kmin = min[kγp, kψp, kωp]. Since lω is very small, it
is always possible to find a proper kmin such that kmin−lω >

0, and ζ is ultimately bounded by ‖ζζζ‖ < ∆̄τ
kmin−lω

. The

ultimate boundedness of ζζζ implies that ‖R̄RR3e‖ < ∆̄τ
kmin−lω

after a finite time T1. Set kγp, kψp and kωp such that

∆̄τ

kmin − lω
+ ‖∆∆∆f‖ <

∆̄τ

kmin − lω
+ lv‖ζζζ‖+ ∆̄f <

∆̄τ (1 + lv)

kmin − lω
+ ∆̄f < δR

where δR is defined in Proposition 5. For 0 < t ≤ T1, all
signals are uniformly continuous; thus they are bounded.
For t > T1, ‖R̄RR3e‖ + ‖∆∆∆f‖ < δR, because of the ultimate
boundedness of R̄RR3e. According to Proposition 5, |φ| < Uφ

and |θ| < Uθ are established for t > T1, and 2) is proved.

All requirements of Proposition 5 are then satisfied, so
that planar tracking error p̄ppe is ultimately bounded. Re-
quirements of Proposition 4 are assured by the bounded-
ness of φ and θ, and the altitude tracking error ze can also
be proved ultimately bounded. This proves 3). ¤

5 Simulation and discussion
In the simulation, we use the un-simplified model

(5)∼(8), with the forces and torques given by (9) and (10).
Parameters of the autonomous helicopter are cited from
[27]. The constraints of the main rotor thrust and fuselage
attitude are given in Table 1.

The reference trajectory to be tracked is given by

xr(t) = 9.6× 10−8t5 − 1.12× 10−5t4 + 3.2× 10−4t3 + 0.2

yr(t) = −5.76× 10−8t5 + 6.4× 10−6t4 − 1.6× 10−4t3 − 0.2

zr(t) = 1.152× 10−7t5 − 1.44× 10−5t4 + 4.8× 10−4t3

ψr(t) = atan2(ẏr, ẋr)

The initial position and velocity are supposed to be ppp0 =
[4, 5, 2]T(m) and vvv0 = [0.2,−0.2, 0]T, respectively. The ini-
tial yaw angle is supposed to be ψ0 = 1 rad. The initial
values of other states are supposed to be zeros.

The bounds of the second-order derivatives of the refer-
ence trajectory are calculated by

|z̈r| ≤ 0.015, ‖¨̄pppr‖ ≤ 0.03 (57)

The expected values of Uφ and Uθ suggest that MR = 2.7 in
Proposition 5. Substituting (27) into (26) and (31) yields
the available ranges of the control parameters

|kz|+ |kw| < 1.9, |kp|+ |kv| < 1.9

The values of control parameters are listed in Table 2.

Table 1 Constraints of thrust and attitude

Constraint Value Constraint Value

Ut 68.6 N UT 102.9 N

Uφ 0.34 rad Uθ 0.34 rad

Table 2 Control parameters

Parameter Value Parameter Value

kz 1 kw 0.5

kp 1.2 kv 0.4

kγp 2.12 kγi 2.25

kψp 0.35 kψi 0.06

kωp 5 kωi 12.96

The simulation results are displayed in Figs. 2∼ 6. As
can be seen from Figs. 2 and 3, the closed-loop system
tracks the reference trajectory with ultimately bounded
static errors. In the static state, the relatively large value
of ye is due to the disturbance resulted from the tail rotor
thrust. Fig. 4 demonstrates that the attitude of the fuse-
lage is maintained in secure ranges, with magnitudes of roll
and pitch angles less than 0.17 rad, or 10 deg. Besides, the
tracking performance of the yaw angle is satisfactory. The
main rotor thrust and the corresponding main rotor col-
lective pitch are displayed in Fig. 5, where the main rotor
thrust is smooth and bounded within small ranges, indi-
cating that the saturated control is effective. Although no
explicit constraints are assigned directly for the collective
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pitch of the tail rotor (Tt) and cyclic pitches of the main ro-
tors (as and bs), their actual values are bounded with small
ranges (less than 0.17 rad, or 10 deg), as are shown in Fig. 6.
In summary, the simulation results demonstrate that under
the proposed partially saturated controller, the tracking er-
rors are ultimately bounded, while the main rotor thrust
and fuselage attitude satisfy the predefined constraints.

Fig. 2 The position of the closed-loop system (The actual
position tracks the reference position.)

Fig. 3 Tracking errors of the closed-loop system (Tracking
errors are ultimately bounded.)

Fig. 4 The attitude of the closed-loop system (Roll and pitch
angles are maintained very small, while the yaw angle tracks its

reference signal.)

To better evaluate the proposed controller, the simula-
tion results of a closed-loop system with non-saturated con-
trol are provided in Figs. 7∼ 9. The non-saturated control

is designed by using the backstepping approach, with con-
trol parameters selected similar to those of the proposed
saturated control. As can be seen from Fig. 7, the non-
saturated control seems superior in transient performances
of tracking errors. However, Fig. 8 indicates that the atti-
tude of the closed-loop system with non-saturated control is
somewhat dangerous, since the roll and pitch angles reach
some excessively large values. In Fig. 9, it is obvious that
the main rotor thrust varies sharply, which is certainly un-
desirable.

Fig. 5 The main rotor thrust and the main collective pitch of
closed-loop system (They satisfy the predefined constraints.)

Fig. 6 Collective pitch of the tail rotor, and cyclic pitches of
the main rotor (Their values are within small ranges (less than

10 deg).)

Fig. 7 Tracking errors of the closed-loop system without
saturated control (Transient performances are better.)
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Fig. 8 The attitude of the closed-loop system without
saturated control (Roll and pitch angles might reach

excessively large values.)

Fig. 9 The main rotor thrust and the main collective pitch of
closed-loop system without saturated control (They vary

sharply.)

6 Conclusion
A nonlinear controller is proposed to achieve the trajec-

tory tracking of a 6-DOF model-scaled helicopter in the
presence of constraints on the main rotor thrust and fuse-
lage attitude. With some extensions, the technique for the
saturated control of a 3-DOF VTOL aircraft is adopted as
the basic methodology in this research. Instead of the tra-
ditional un-smooth saturation function, the smooth hyper-
bolic tangent function is employed as the saturation func-
tion, such that the derivatives of virtual control are pos-
sible to be solved analytically, and the Barbalat Lemma
can be applied to stability analysis. The simulation re-
sults demonstrate that under the proposed partially sat-
urated controller, tracking errors are ultimately bounded
while constraints on the main rotor thrust and fuselage at-
titude are satisfied.

Appendix
The hyperbolic function tanh(·) in (1) possesses the fol-

lowing superior properties.
Property A1. tanh(s) is differentiable for s ∈ R, and
1) −1 < tanh(s) < 1;
2) s tanh(s) > 0, ∀s 6= 0; s tanh(s) = 0 ⇔ s = 0.
Property A2. The 1st-order and 2nd-order derivatives

of the hyperbolic tangent function are bounded, namely

0 <
d tanh(s)

ds
=

4

(es + e−s)2
≤ 1 (A1)

−0.77 <
d2 tanh(s)

ds2
=
−8(es − e−s)

(es + e−s)3
< 0.77 (A2)

Property A3. Given any interval D1 :
{s | |s| < s̄, s̄ > 0}, there always exists a positive number
χ(s̄) such that χ(s̄)|s| ≤ | tanh(s)| ≤ |s|.

The results of Property A1 and Property A2 are intu-
itive. In Property A3, | tanh(s)| ≤ |s| can be proved di-
rectly by considering (A1) and tanh(0) = 0; and χ(s̄)|s| ≤
| tanh(s)| can be proved by selecting

0 < χ(s̄) <
1

s̄
tanh(s̄) (A3)

Property A4. For any vector xxx = [x1, · · · , xn]T 6= 0,

xxxTtanh(xxx) =

n∑
i=1

xi tanh(xi) > 0

Property A5. Given a region

D2 : {xxx ∈ Rn | ‖xxx‖ < x̄, x̄ > 0}

there always exists a positive number χ(x̄) such that
χ(x̄)‖xxx‖ ≤ ‖tanh(xxx)‖ ≤ ‖xxx‖.

The result of Property A4 is intuitive. Property A5 is a
vector form of Property A3, and can be proved similarly.

Definition A1. The square of a vector xxx =
[x1, · · · , xn]T is defined by xxx2 := [x2

1, · · · , x2
n]T.

Definition A2. The kth-order (k = 1, 2, · · · ) derivative
of the vector hyperbolic function is

dktanh(xxx)

dxxxk
:=




dk tanh(x1)

dxk
1

0 0

...
...

...

0 0 dk tanh(xn)

dxk
n




where xxx = [x1, · · · , xn]T.
It follows from Definitions 1, A1∼A2 that

dtanh(xxx)

dt
=




d tanh(x1)
dx1

ẋ1

...
d tanh(xn)

dxn
ẋn


 =




d tanh(x1)
dx1

0 0
...

...
...

0 0 d tanh(xn)
dxn







ẋ1

...
ẋn


 =

dtanh(xxx)

dxxx
ẋxx

d2tanh(xxx)

dt2
=

dtanh(xxx)

dxxx
ẍxx +

d2tanh(xxx)

dxxx2
ẋxx2

Definition A3. The vector integral is

∫ yyy

zzz

xxxTdxxx :=

[∫ y1

z1

x1dx1, · · · ,

∫ yn

zn

xndxn

]T

where xxx = [x1, · · · , xn]T, yyy = [y1, · · · , yn]T and zzz =
[z1, · · · , zn]T.

With the above properties and definitions, proofs of
Proposition 2 and Proposition 3 can be given as follows.
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Proof of Proposition 2. Define the Lyapunov candi-
date as

L0 = α

∫ kξξξ1+lξξξ2

0

tanh(ξξξ)Tdξξξ + β

∫ lξξξ2

0

tanh(ξξξ)Tdξξξ+

k

2
ξξξT
2 ξξξ2 > 0

Its time derivative is

L̇0 =αtanh(kξξξ1 + lξξξ2)
T(kξ̇ξξ1 + lξ̇ξξ2) + βltanh(lξξξ2)

Tξ̇ξξ2+

kξξξT
2 ξ̇ξξ2 = −lθTθ − βkξξξT

2 tanh(lξξξ2) < 0

where θθθ := αtanh(kξξξ1 + lξξξ2) + βtanh(lξξξ2). As a result, the
global asymptotical stability is proved.

Let µµµ1 = kξξξ1 + lξξξ2, µµµ2 = lξξξ2 and µµµ = [µµµT
1 ,µµµT

2 ]T, and
select a region:

D3 : {µµµ | ‖µµµ‖ < µ̄, µ̄ > 0} (A4)

According to Property 5, there always exists a positive
number χ(µ̄) satisfying χ‖µµµ‖ < ‖tanh(µµµ)‖ < ‖µµµ‖, such
that

L0 >
1

2
χ(αµµµT

1 µµµ1 + βµµµT
2 µµµ2) +

k

2l2
µµµT

2 µµµ2 =

1

2
µµµT

[
χαIn×n 0

0 (χβ + k
l2

)In×n

]
µµµ > χ1‖µµµ‖2

(A5)

where χ1 = min
[

1
2
χα, 1

2

(
χβ + k

l2

)]
. Moreover,

L̇0 <− lθθθTθθθ − kβ

l
tanh(µµµ2)

Ttanh(µµµ2) =

− tanh(µµµ)T
[

α2lIn×n αβlIn×n

αβlIn×n (β2l + kβ
l

)In×n

]
tanh(µµµ) =

− tanh(µµµ)TDtanh(µµµ)

The symmetric matrix D is positive definite, because there
exists an invertible matrix

T =

[
In×n − β

α
In×n

0 In×n

]

such that

TTDT =

[
α2lIn×n 0

0 kβ
l

In×n

]

Its eigenvalues are positive. With Property 3,

L̇0 < −χ2‖µµµ‖2 (A6)

where

χ2 = min

[
α2lχ2,

kβ

l
χ2

]
(A7)

indicating that system (3) is semi-globally exponentially
stable in the region of D3 given by (A4), where bound µ̄
can be selected arbitrarily large. ¤

Remark A1. A large µ̄ results in a small χ(µ̄), leading
to small χ1 and χ2. Since χ2 is proportional to the converg-
ing rate, as is shown by (A6), the exponential stability of
system (3) reduces to asymptotical stability as the region
{µµµ | ‖µµµ‖ < µ̄, µ̄ > 0} increases.

Proof of Proposition 3. Use L0 as the Lyapunov can-
didate.

L̇0 <− χ2‖µµµ‖2 + αl∆̄‖µµµ1‖+ βl∆̄‖µµµ2‖+
k

l
∆̄‖µµµ2‖ <

− χ2‖µµµ‖2 + χ3∆̄‖µµµ‖

where χ3 = max
[
αl,

(
βl + k

l

)]
. Therefore, µµµ converges into

D4 :

{
µµµ

∣∣∣∣‖µµµ‖ <
χ3

χ2
∆̄

}

To guarantee that ‖µµµ‖ < µ̄, ∆̄ should satisfy

χ3

χ2
∆̄ < µ̄ ⇔ max

[
αl∆̄,

(
βl +

k

l

)
∆̄

]
< µ̄χ2

⇔ ∆̄ < min

[
µ̄χ2

αl
,

µ̄χ2

(βl + k
l
)
, α + β

] (A8)

where χ2 is given by (A7). ¤
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