Title: Lack of fidelity revealed in an insect-fungal mutualism after invasion Short title: Symbiont fidelity breakdown during an invasion

Corresponding author:

Bernard Slippers, Tel: +27124202463; Fax: +27124203960; E-mail: Bernard.Slippers@fabi.up.ac.za

Co-Authors:

Amy L. Wooding¹, Michael J. Wingfield¹, Brett P. Hurley², Jeff Garnas², Peter de Groot^{3*} and Bernard Slippers¹

¹ Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
²Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
³Natural Resources Canada – Canadian Forest Service, Great Lakes Forestry Centre 1219 Queen Street East Sault Ste Marie, Ontario, P6A 2E5 Canada
*Deceased

Amy.Wooding@fabi.up.ac.za Mike.Wingfield@fabi.up.ac.za Brett.Hurley@fabi.up.ac.za Jeff.Garnas@up.ac.za

1. Summary

Symbiont fidelity is an important mechanism in the evolution and stability of mutualisms. Strict fidelity has been assumed for the obligate mutualism between *Sirex* woodwasps and their mutualistic *Amylostereum* fungi. This assumption has been challenged in North America where a European woodwasp, *Sirex noctilio*, and its fungal symbiont *Amylostereum areolatum*, have recently been introduced. We investigate the specificity of the mutualism between *Sirex* and *Amylostereum* species in Canada, where *S. noctilio* co-infests *Pinus* with native *S. nigricornis* and its mutualist *A. chailletii*. Using phylogenetic and culture methods, we show that extensive, reciprocal exchange of fungal species and strains is occurring, with 75.3% of *S. nigricornis* carrying *A. areolatum* and 3.5% of *S. noctilio* carrying *A. chailletii*. These findings show that the apparent specificity of the mutualism between *Sirex* spp. and their associated *Amylostereum* spp. is not the result of specific biological mechanisms that maintain symbiont fidelity. Rather, partner switching may be common when shifting geographic distributions driven by ecological or anthropogenic forces bring host and mutualist pairs into sympatry. Such novel associations have potentially profound consequences for fitness and virulence. Symbiont sharing, if it occurs commonly, may represent an important but overlooked mechanism of community change linked to biological invasions.

2. Keywords

Mutualism, insect-fungus symbiosis, symbiont fidelity, invasion, Sirex woodwasp

3. Introduction

A frequently cited consequence of globalisation is the growing homogenisation of biotic communities, commonly driven by biological invasions. Invasive species can have serious negative impacts on the ecosystems in which they become established. Such impacts include invasive species altering existing

mutualisms among native species, or acquiring novel symbionts that affect virulence in one partner [1-3].

In the Southern Hemisphere the invasive wood-boring wasp *Sirex noctilio* and its obligate nutritional fungal mutualist *Amylostereum areolatum*, is a highly aggressive pest complex infesting and killing healthy plantation pines [4]. In its native range in Eurasia and North Africa this complex is a secondary pest, infesting dead or dying conifers, primarily in the genus *Pinus* [5]. The complex has recently been introduced into eastern North America (ENA), where it poses a potential threat to planted and natural pine forests [6].

The introduction of *S. noctilio* into ENA provides an opportunity to study the specificity of the mutualism between *Sirex* and *Amylostereum* species. This mutualism was until recently assumed to be highly specific as a result of fungal mutualists being vertically transmitted as asexual spores [7]. This dogma has been questioned recently with the discovery of specimens of native *S. nigricornis* and *S. nitidus* carrying *A. areolatum* [8].

We investigate the specificity of the *Sirex-Amylostereum* mutualism in invasive and native populations in Canada. In this study we question whether native *S. nigricornis* and invasive *S. noctilio* are strictly associated with their known symbionts, *A. chailletii* and *A. areolatum* respectively. We further examine evidence for recent exchange of *A. areolatum* strains between *S. nigricornis* and *S. noctilio* by identifying shared clonal lineages of *Amylostereum* in native and invasive wasp populations.

4. Materials and Methods

A collection of 134 *Sirex* woodwasps and their mutualistic fungi, isolated from female mycangia [as described in 9], was obtained from collaborators in Canada (see electronic supplementary material S1 and S2 for sampling locations and storage details). Wasp and fungal samples were identified to species using sequence data from the mitochondrial cytochrome c oxidase subunit I (COI) and mitochondrial small subunit (mtSSU) genes respectively (electronic supplementary material S3

and S4). The internal transcribed spacers (ITS) and intergenomic spacer (IGS) regions of the rRNA locus were sequenced for representative samples of each *A. areolatum* mtSSU haplotype (electronic supplementary material S5), to compare them with isolates from previous studies which produced multilocus genotypes (MLG's). Where cloning was necessary, the Promega pGEM[®]-T Easy Vector System was used. PCR products were sequenced on an ABI PRISM 3100 automated DNA sequencer (Applied Biosystems) at the sequencing facility of the University of Pretoria.

Bidirectional sequences were assembled and edited in CLC Main Workbench 6.6.2 (CLC Bio Inc. Denmark) and aligned using MEGA 5 [10] and MAFFT [11]. Sequence Evolution Models were selected using AIC in jModelTest 0.1.1 [12]. Species identification was based on group membership in neighbour-joining trees constructed in PAUP 4.0 [13]. Haplotype analysis was carried out using Splitstree4 [14]. Maximum likelihood (PhyML [15]) and Bayesian (MrBayes [16]) approaches were used for phylogenetic analysis of ITS sequence data from representative samples. Laboratory methodologies, sequence evolution models and programme parameters can be found in electronic supplementary material S6-S8.

Vegetative incompatibility assays using randomly selected representative samples from each identified *A. areolatum* mtSSU haplotype were performed using established methods to determine vegetative compatibility groups (VCG's; electronic supplementary material S9) [17]. VCG richness was then used as an additional measure of genetic diversity.

5. Results

COI sequencing identified 77 *S. nigricornis* and 57 *S. noctilio* specimens. Fungal species switching has occurred in Canadian siricid populations with 75.3% of *S. nigricornis* females carrying *A. areolatum* (n=58), and 3.5% of *S. noctilio* females carrying *A. chailletii* (n=2; electronic supplementary material S10). We detected a single mtSSU haplotype for *A. chailletii* and three mtSSU haplotypes for *A. areolatum*, which differed by a maximum of two base pairs (figure 1). Two of the *A. areolatum* haplotypes, H3 and H2, were uniquely detected in *S. noctilio* and *S. nigricornis* respectively, whereas the third (H1) was carried by both species.

Representative *A. areolatum* isolates for which we obtained MLGs grouped into two clades, (A and B), based on ITS sequence data (table 1, electronic supplementary material S12). Both MLG1 and

MLG3 corresponded with previously isolated samples [MLG3 and MLG2 in 18 respectively]. MLG2 was unique in this study, although ITS (MLG2a and MLG2b) and IGS sequences (MLG2a) have been previously isolated [8, 19].

Multiple VCG's were identified within each mtSSU haplotype. VCG richness was high; 14 VCG's were identified from 27 isolates of *A. areolatum*. Ten isolates were incompatible with all others, and up to 5 distinct VCGs were isolated from wasps emerging from the same tree. One VCG was shared between *S. noctilio* and *S. nigricornis*, confirming recent lateral transfer of strains between invasive and native Canadian *Sirex* populations.

6. Discussion

The identification of a shared MLG and VCG of *A. areolatum* between newly sympatric *Sirex* species strongly supports direct lateral transfer of symbionts. This transfer is bi-directional, as ~3% of *S. noctilio* females carried *A. chailletii*, but is skewed towards *A. areolatum* transfer to *S. nigricornis*. This skewed directionality of transfer could result from temporal patterns in oviposition and emergence, or disproportionate utilization of *S. noctilio*-weakened trees by *S. nigricornis*.

The lack of host-symbiont fidelity detected in this study, also shown in an independent concurrent study [19], calls into question the mechanisms maintaining the apparent fidelity of symbiont associations in the native range of *S. noctilio*. It is possible that geographic, host, or temporal segregation among native siricids may be sufficient to maintain the low rates of transfer observed in Europe and elsewhere [5]. Alternatively, fungal and or wasp mis-identification and sparse sampling across Europe could have led to underestimates of symbiont switching [6] We propose that the process of invasion of *S. noctilio* into Canada has facilitated symbiont switching among *S. noctilio* and *S. nigricornis*. The sequence data produced in this study (GenBank; electronic supplementary

material S3-S5) will serve as an important reference for further studies examining the mechanism of horizontal symbiont transfer among siricid woodwasps.

Symbiont transfer is stable over at least one generation; 54 of 58 *S. nigricornis* females carrying *A. areolatum* emerged from trees where no *S. noctilio* emerged in the sampling season. Similarly, *S. noctilio* specimens carrying *A. chailletii* emerged from logs that were not infested with *S. nigricornis*. However, these wasps could have entered trees pre-infected via wind dispersed spores (as can occur with *A. chailletii* in Europe [20]), un-emerged woodwasp infestation, or aborted woodwasp attacks. Important questions which should be addressed by further studies are whether carrying the "wrong" symbiont influences wasp or fungal fitness, and whether novel symbiont associations are stable over longer time periods. It is evident however, that fungal switching increases opportunities for the fungi to spread by increasing the pool of potential vectors.

Previous studies have shown that diversity of *A. areolatum* in the Southern Hemisphere is low, with only two VCG's identified [17]. We identified 14 VCG's demonstrating higher than expected diversity in an invaded area, even higher than in the putative native range in Northern Europe [20]. This diversity could reflect more than one introduction of the fungus into ENA, including the possibility of introduction prior to the *S. noctilio* invasion, together with *S. juvencus* [21]. The high amount of VCG diversity could also be influenced by sexual reproduction of the fungus in ENA. However, fruiting bodies of *A. areolatum* have not been reported in North America, and are rare in the native European range [17].

The detection of an *A. areolatum* MLG unique to Canada supports the results of Nielsen *et al.* and Bergeron *et al.* [8, 18], who identified *A. areolatum* isolates unique to ENA. These findings suggest that this genotype could have been introduced from a previously unsampled *S. noctilio* source population, as identified by a recent analysis of a global *S. noctilio* collection [22], or that ENA harbours an unsampled native *A. areolatum* population. A concurrent study of woodwasp-fungal fidelity in eastern USA revealed that two native woodwasps, *S. nigricornis* and *S. nitiudus*, carried *A.*

areolatum in their mycangia [19]. The majority of these fungal isolates were shown to contain IGS type BE, which was identified in MLG2 in this study. MLG2 was associated with 55% of *A. areolatum* carrying *S. nigricornis* specimens. This IGS type, and IGS type E unique to the present study, have been identified exclusively from ENA. This lends further support to the hypothesis of a native population *A. areolatum* in ENA.

The ecological and evolutionary consequences of symbiont switching in the *Sirex-Amylostereum* mutualism are not known, but could be significant [1]. One dramatic possibility is that symbiont swapping could induce changes in wasp virulence with respect to their ability to attack and kill healthy host trees [3]. Undoubtedly, the potential threat of the *S. noctilio – A. areolatum* complex to native and commercial forest ecosystems in ENA is more complex than might previously have been anticipated. Given the specificity of interactions between native Siricids and their parasites, these relationships could also be altered by symbiont switching [6]. The discovery of symbiont switching at considerable frequency also calls into question the wisdom of importing foreign strains of the nematode *Deladenus siricidicola*, which feeds on *A. areolatum* during part of its life-cycle, as a biological control agent [6], as the nematode could easily escape into native siricid populations. The lack of specificity observed between *Sirex* and *Amylostereum* species after the invasion of *S. noctilio* into ENA highlights a need to reassess the specificity of the mutualism in Eurasia and North Africa.

7. Acknowledgements

We thank members of the Tree Protection Cooperative Programme (TPCP), the Department of Trade and Industry (DTI) THRIP programme and the National Research Foundation (NRF) of South Africa for funding. We also thank our collaborators, Mr Chuck Davis (Natural Resources Canada, Canadian Forest Service) for providing the samples used in this study, and Sarah Drabble (Ontario Ministry of Natural Resources) for monitoring emergence of Sirex specimens. The authors declare no competing interests.

8 References

- 1 Richardson, D. M. 2011 *Fifty Years of Invasion Ecology: The Legacy of Charles Elton.* UK: Wiley-Blackwell.
- 2 Battisti, A., Roques, A., Colombari, F., Frigimelica, G. & Guido, M. 1999 Efficient transmission of an introduced pathogen via an ancient insect-fungus association. *Naturwissenschaften.* 86, 479-483. (doi:10.1007/s001140050658)
- 3 Hulcr, J. & Dunn, R. R. 2011 The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. *P. Roy. Soc. B-Biol. Sci.* 278, 1323-1331. (doi:10.1098/rspb.2011.1130)
- 4 Hurley, B., Slippers, B. & Wingfield, M. J. 2007 A comparison of control results for the alien invasive woodwasp, *Sirex noctilio*, in the southern hemisphere. *Agriculture and Forest Entomology*. **9**, 159-171. (doi:10.1111/j.1461-9563.2007.00340.x)
- 5 Spradbery, J. & Kirk, A. 1978 Aspects of the ecology of siricid woodwasps (Hymenoptera: Siricidae) in Europe, North Africa and Turkey with special reference to the biological control of *Sirex noctilio* F. in Australia. *Bulletin of Entomological Research.* **68**, 341-359.
- 6 Slippers, B., De Groot, P. & Wingfield, M. J. 2012 *The Sirex Woodwasp and its Fungal Symbiont: Research and Management of a Worldwide Invasive Pest.* Dordrecht: Springer.
- 7 Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. 2004 The evolution of cooperation. *Quarterly Review of Biology*. **79**, 135-160.
- 8 Nielsen, C., Williams, D. W. & Hajek, A. E. 2009 Putative source of the invasive Sirex noctilio fungal symbiont, Amylostereum areolatum, in the eastern United States and its association with native siricid woodwasps. Mycol. Res. 113, 1242-1253. (doi:10.1016/j.mycres.2009.08.012)
- 9 Thomsen, I. M. & Harding, S. 2011 Fungal symbionts of siricid woodwasps: isolation techniques and identification. *Forest Pathology*. **41**, 325-333. (doi:10.1111/j.1439-0329.2010.00677.x)
- 10 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, K. 2011 MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* 28, 2731-2739. (doi:10.1093/molbev/msr121)
- 11 Katoh, K. & Toh, H. 2008 Recent developments in the MAFFT multiple sequence alignment program. *Briefing in Bioinformatics*. **9**, 286-298. (doi:10.1093/bib/bbn013)
- 12 Posada, D. 2008 jModelTest: Phylogenetic Model Averaging. Mol. Biol. Evol. 25, 1253-1256.
- 13 Swofford, D. L. 2002 PAUP* Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
- 14 Huson, D. H. & Bryant, D. 2006 Application of Phylogenetic Networks in Evolutionary Studies. *Mol. Biol. Evol.* 23, 254-267. (doi:10.1093/molbev/msj030)
- 15 Guindon, S. & Gascuel, O. 2003 A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. *Syst. Biol.* **52**, 696-704.
- 16 Huelsenbeck, J. P. & Ronquist, F. 2003 Bayesian inference of phylogeny. *Bioinformatics*. 17, 754-755.
- 17 Slippers, B., Wingfield, M. J., Coutinho, T. A. & Wingfield, B. D. 2001 Population structure and possible origin of *Amylostereum areolatum* in South Africa. *Plant Pathol.* **50**, 206-210.
- 18 Bergeron, M.-J., Leal, I., Foord, B., Ross, G., Davis, C., Slippers, B., De Groot, P. & Hamelin, R. C. 2011 Putative origin of clonal lineages of *Amylostereum areolatum*, the fungal symbiont associated with *Sirex noctilio*, retrieved from *Pinus sylvestris*, in eastern Canada. *Fungal Biology*. 115, 750-758. (doi:10.1016/j.funbio.2011.05.009)

- 19 Hajek, A. E., Nielsen, C., Kepler, R. M., Long, S. J. & Castrillo, L. 2013 Fidelity among *Sirex* woodwasps and their fungal symbionts. *Invertebrate Microbiology*. **65**, 753-792. (doi:10.1007/s00248-013-0218-z)
- 20 Vasiliauskas, R., Stenlid, J. & Thomsen, I. M. 1998 Clonality and genetic variation in *Amylostereum areolatum* and *A. chailletii* from Northern Europe. *New Phytologist* **139**, 751-758.
- 21 Benson, R. B. 1962 Holoarctic sawflies (Hymenoptera: Symphyta). Bulletin of the British Museum (Natural History), Entomology. 12, 379-409.
- 22 Boissin, E., *et al.* 2012 Retracing the routes of introduction of invasive species: the case of the *Sirex noctilio* woodwasp. *Mol. Ecol.* **21**, 5728–5744. (doi:10.1111/mec.12065)

9.Figure and table legends

Figure 1. (a) Haplotype network of *Amylostereum areolatum* (n=113). Numbers of isolates per wasp species are shown within haplotype nodes. Dark grey indicates samples isolated from *S. noctilio*, white from *S. nigricornis*. (b) Haplotype network of *A. chailletii* isolates. Connecting lines specify one substitution, cross-bars specify additional substitutions separating haplotypes. Below the nodes are countries from which the haplotypes have previously been sampled (accession numbers in electronic supplementary material S11).

Genotype	mtSSU- ITS profile	IGS profile	mtSSU previously sampled	ITS previously sampled	IGS previously sampled	Region
MLG1	H1-A	D	Bergeron <i>et. al.</i> (2011)	Bergeron <i>et.</i> <i>al.</i> (2011)	Bergeron <i>et.</i> <i>al.</i> (2011) and Hajek <i>et</i> <i>al.</i> (2013)	ENA, Southern Hemisphere
MLG2a*	H2-B	BE	No	Nielsen <i>et. al.</i> (2009)	Nielsen <i>et.</i> <i>al.</i> (2009) and Hajek <i>et</i> <i>al.</i> (2013)	USA
MLG2b*	H2-B	Е	No	Nielsen <i>et. al.</i> (2009)	No	USA
MLG3a*	НЗ-А	BD	Bergeron <i>et. al.</i> (2011)	Bergeron <i>et.</i> <i>al.</i> (2011)	Bergeron <i>et.</i> <i>al.</i> (2011) and Hajek <i>et</i> <i>al.</i> (2013)	ENA
MLG3b*	Н3-А	D	Bergeron <i>et. al.</i> (2011)	Bergeron <i>et.</i> <i>al.</i> (2011)	Bergeron <i>et.</i> <i>al.</i> (2011) and Hajek <i>et</i> <i>al.</i> (2013)	ENA

 Table 1. Multilocus genotypes (MLGs) of representative Amylostereum areolatum samples in

 comparison to previously sampled A. areolatum isolates

*a and b represent IGS profiles

Figure 1. (a) Haplotype network of Amylostereum areolatum (n=113). Numbers of isolates per wasp species are shown within haplotype nodes. Dark grey indicates samples isolated from S. noctilio, white from S. nigricornis. (b) Haplotype network of A. chailletii isolates. Connecting lines specify one substitution, cross-bars specify additional substitutions separating haplotypes. Below the nodes are countries from which the haplotypes have previously been sampled (accession numbers in electronic supplementary material S11).

S1: Supplementary figure 1: Sampling locations of trees felled for collection of *Sirex* wasps are indicated by white balloons. The black scale bar indicates a distance of 100km.

S2: Supplementary table 1: Storage collection information for wasp (EntoStock Collection*) and fungal (CMW* samples used in this study

Sample Number	EntoStock number	CMW number of fungal isolate	Sampling site	Tree
92	296	36936	202	1
95	297	36937	202	1
98	298	36938	202	1
105	299	37078	L6	2
107	300	37032	202	2
121	301	36989	L6	3
123.1	302	37053	202	1
123.2	303	36939	202	1
123.3	304	37033	202	1
124	305	37054	202	1
125	306	36940	202	1
126	307	36941	203	2
127	308	37055	203	2
128	309	37056	203	1
141	310	36942	L6	2
142	311	36990	L6	3
144	312	37057	Т	3
146	313	36943	202	1
150	314	37058	L6	3
151	315	39644	L6	2
152	316	36991	L6	2

153	317	36945	L6	2
154	318	36992	L6	2
161	319	36993	203	2
163	321	37035	202	1
166	323	36946	L6	2
167	324	36947	L6	2
168	325	37206	L6	1
169	326	36994	L22	1
170	327	36995	т	2
192	328	36996	L22	1
193	329	36997	L6	2
200	331	36998	202	2
208	333	36999	203	2
209	334	37000	202	2
213	335	37079	202	2
214	336	37060	L6	2
215	337	37061	<u>-</u> з Н2	1
220	338	37062	202	2
220	339	37002	16	2
222	340	36010	16	2
220	2/1	27002	16	2
229	241 242	27002		2
230	242	37003	202	۲ ۱
231	242	26051	202	1
232	344	30951	202	2
250	345	37063	56	1
251	346	37064	202	2
254	347	37005	201	2
260	348	37006	202	2
265	349	37036	201	1
266	350	37080	201	1
267	351	36952	203	2
277	353	37065	56	1
278	354	36954	203	2
283	355	36955	56	1
284	356	36956	203	2
285	357	36957	200	1
286	358	36958	200	1
287	359	36959	200	1
288	360	36960	200	1
289	361	37007	200	1
290	362	37037	200	1
291	363	37081	200	1
292	364	36961	200	1
293	365	37066	200	1
294	366	37067	200	1
295	367	36962	200	2
296	368	37038	200	2
309	369	37008	200	1
310	370	36963	200	1
311	371	36964	200	1
312	372	36965	200	1

212	272	27000	200	2
214	373	27010	200	2
314 315	374	27010	203	ے 1
212	375	37011	00	1
324 225	370	30900	200	1
325	3//	37207	201	1
332	378	37012	200	1
334	379	37039	200	1
335	380	36967	200	1
337	381	36968	158	1
338	382	37068	200	2
348	383	37013	56	1
357	384	36969	200	1
358	385	36970	200	1
359	386	36971	200	1
360	387	36972	200	1
361	388	37040	200	2
362	389	37041	203	2
375	390	37014	158	2
376	391	36973	158	1
378	392	36974	Т	2
380	393	37015	158	1
382	394	36975	200	1
384	395	36976	200	1
385	396	37208	200	1
386	397	36977/37016	200	1
387	398	37017	158	2
388	399	37083	158	2
380	400	37069	158	2 1
300	400	36078	158	1
202	401	26070	100	1
292	402	26080	L22	1
407	403	30980	200	1
408	404	37084	158	2
412	405	37085	158	1
414	407	37043	158	1
421	408	37070	158	2
422	409	37071	158	2
423	410	37072	158	2
424	411	37018	158	2
425	412	37073	158	2
426	413	37209	158	2
427	414	36981	158	2
428	415	37074	158	1
429	416	37086	158	1
430	417	37019	158	1
431	418	37075	158	1
432	419	37087	158	1
433	420	37020	158	1
434	421	37044	158	1
437	422	37021	158	1
440	423	37076	201	1
441	424	36982	201	1

442	425	36983	201	1
443	426	37077	L22	1
444	427	36984	Т	2
459	428	37022	158	2
460	429	36985	158	2
462	430	36986	158	1
464	431	36987	158	1
476	432	37045	L22	1
477	433	37023	L22	1
514	434	37024	158	1
517	435	36988	L22	1

* Permanent collections of the Forestry and Agricultural Biotechnology Institute

Sample	Wasp species	COI accession	MS	Location
 number	· ·	number	haplotype	
EB296	Sirex noctilio	KC310477	1	202
EB335	Sirex noctilio	KC310480	3	202
EB336	Sirex noctilio	KC310481	3	L6
EB319	Sirex noctilio	KC310478	1	203
EB328	Sirex noctilio	KC310479	3	L22
EB337	Sirex noctilio	KC310482	1	H2
EB342	Sirex noctilio	KC310483	1	L6
EB345	Sirex nigricornis	KC310484	1	56
EB347	Sirex noctilio	KC310485	1	201
EB362	Sirex nigricornis	KC310486	2	200
EB365	Sirex nigricornis	KC310487	1	200
EB375	Sirex nigricornis	KC310488	2	56
EB392	Sirex noctilio	KC310489	1	Т
EB408	Sirex nigricornis	KC310490	2	158
EB424	Sirex nigricornis	KC310491	2	201
EB432	Sirex nigricornis	KC310492	1	L22

S3: Supplementary table 2: Representative COI samples submitted to GenBank

S4: Supplementary table 3: Representative mtSSU samples submitted to GenBank

Sample number	mtSSU accession number	Fungal species	Wasp species isolated from	mt SSU haplotype	Location
36936	KC296918	A. areolatum	S. noctilio	1	202
36993	KC296895	A. areolatum	S. noctilio	1	203
36994	KC296896	A. areolatum	S. noctilio	1	L22
37061	KC296899	A. areolatum	S. noctilio	1	H2
37003	KC296900	A. areolatum	S. noctilio	1	L6
37063	KC296901	A. areolatum	S. nigricornis	1	56
37005	KC296902	A. areolatum	S. noctilio	1	201
37066	KC296904	A. areolatum	S. nigricornis	1	200
36974	KC296908	A. areolatum	S. nigricornis	1	Т
36975	KC296910	A. areolatum	S. noctilio	1	Т
37077	KC296916	A. areolatum	S. nigricornis	1	L22
37037	KC296903	A. areolatum	S. nigricornis	2	200
37013	KC296907	A. areolatum	S. nigricornis	2	59

37015	KC296909	A. areolatum	S. nigricornis	2	158
36982	KC296914	A. areolatum	S. nigricornis	2	201
37019	KC296913	A. areolatum	S. nigricornis	2	158
36940	KC296893	A. areolatum	S. noctilio	3	202
36945	KC296894	A. areolatum	S. noctilio	3	L6
36996	KC296897	A. areolatum	S. noctilio	3	L22
37060	KC296898	A. areolatum	S. noctilio	3	L6
37010	KC296905	A. chailletii	S. noctilio	-	203
36968	KC296906	A. chailletii	S. nigricornis	-	158
36979	KC296911	A. chailletii	S. nigricornis	-	222
36980	KC296912	A. chailletii	S. nigricornis	-	200
36983	KC296915	A. chailletii	S. nigricornis	-	201
36984	KC296917	A. chailletii	S. noctilio	-	Т

S5: Supplementary table 4: Representative samples used to assess diversity

Sample	ITS accession number(s)*	IGS Accession	IGS Type	mtSSU Hanlotyne	Location**
	KC220710 / KC220720 /	KC210402			202.1
CMW 36936	KC329/19/KC329/20/	KC310492	D	1	202-1
	KC329721			_	
CMW36940	KC329722	KC296876 /	BD	3	202-1
		KC296877			
CMW36945	KC329723	KC296878 /	D	3	L6-2
		KC296879			
CMW36993	KC329724 / KC329725 /	KC296880	D	1	203-2
	KC329726 / KC329727				
CMW37060	KC329748 / KC329749	KC296891 /	BD	3	L6
		KC296892			
CMW36996	KC329728 / KC329729 /	KC296881	D	3	L22-1
	KC329730 / KC329731				
CMW36974	KC329751 / KC329750	KC296890	D	1	T-2
CMW37006	KC329732 / KC329733 /	KC296882	D	1	202-2
	KC329734				
CMW37037	KC329745 / KC329746 /	KC296887	E	2	200-1
	KC329747				
CMW37009	KC329736 / KC329735	KC296883 /	BE	2	200-2
		KC296884			
CMW37015	KC329739 / KC329740	KC296885 /	BE	2	158-1
		KC296886			
CMW37019	KC329741 / KC329742 /	KC296888 /	BE	2	158-1
	KC329743 / KC329744	KC296889			

*Multiple accession numbers are given where multiple alleles were found

**-1 and -2 indicate which tree wasps emerged from at each site

S6: PCR and DNA extraction conditions

Wasp DNA was extracted from thorax tissue using the *prep*GEMTM Insect DNA extraction kit from ZyGEM Corporation Ltd, as per manufacturers' instructions. Fungal DNA was extracted using a modified phenol:chloroform extraction method [1]

All PCRs were carried out in either a BIO RAD iCycler or Veriti (Life Technologies Corporation) thermocycler.

PCR of the COI gene had a total volume of 25μ l, 5μ l of 5x MyTaqTM Reaction Buffer (Bioline), 0.1μ M of both LCO1490 and HCO 2198 [2], 0.5μ l MyTaqTM DNA polymerase (Bioline), 30-100ng of template DNA was used. Cycling conditions were 95°C for 5 minutes, followed by 41 cycles of 95°C for 30 seconds, 46.5° C for 60 seconds and 72° C for 60 seconds, with a final extension step of 72° C for 30 minutes.

PCR of the mtSSU gene had a total volume of 25µl, 2.5µl 10x FastStart Taq DNA Polymerase PCR Buffer (Roche Ltd), 50nM magnesium chloride (Roche Ltd), 400ng of each dNTP, 0.1µM of both MS1 and MS3 [3] and 2.5U FastStart Taq DNA Polymerase (Roche Ltd), 30-100ng of template DNA was used. Cycling conditions were 95°C for 3 minutes, followed by 35 cycles of 95°C for 45 seconds, 58°C for 30 seconds and 72°C for 60 seconds, with a final extension step of 72°C for 10 minutes.

PCR of the IGS rDNA gene had a total volume of 25µl, 5µl of 5x MyTaqTM Reaction Buffer (Bioline), 0.1µM of both P-1 and O-1 [4], 0.5µl MyTaqTM DNA polymerase (Bioline), 30-100ng of template DNA was used. Cycling conditions were 94°C for 1 minute, followed by 35 cycles of 95°C for 30 seconds, 60°C for 20 seconds and 72°C for 30 seconds, with a final extension step of 72°C for 7 minutes.

PCR of the ITS rDNA gene had a total volume of 25µl; 5µl of 5x MyTaqTM Reaction Buffer (Bioline), 0.1µM of both ITS1 and ITS4 [3], 0.5µl MyTaqTM DNA polymerase (Bioline), 30-100ng of template DNA was used. Cycling conditions were 95°C for 5 minutes, followed by 13 cycles of 95°C for 35 seconds, 55°C for 55 seconds and 72°C for 45 seconds, 13 cycles of 95°C for 35 seconds, 55°C for 55 seconds and 72°C for 35 seconds, 55°C for 55 seconds and 72°C for 35 seconds, 55°C for 55 seconds and 72°C for 35 seconds.

PCR of cloning products had a total volume of 50µl; 5µl 10x FastStart Taq DNA Polymerase PCR Buffer with magnesium chloride (Roche Ltd), 400ng of each dNTP, 0.1µM of both SP6 and T7 and 2.5U FastStart Taq DNA Polymerase (Roche Ltd). Cycling conditions were 95°C for 3 minutes, followed by 25 cycles of 95°C for 30 seconds, 51°C for 30 seconds, with a final extension step of 72°C for 10 minutes.

PCR and sequencing success rate was 100% for all reactions for all samples.

References

1. Slippers, B., Crous, P. W., Denman, S., Coutinho, T. A., Wingfield, B. D. & Wingfield, M. J. 2004 Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as *Botryosphaeria dothidea*. *Mycologia*. **96**, 83-101.

2. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. 1994 DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Molecular Marine Biology and Biotechnology*. **3**, 294-299.

3. White, T. J., Lee, S. & Taylor, J. 1990 *Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics*. In PCR protocols: a guide to methods and applications (eds. D. H. G. Innis, I. J. Sninsky& T. J. White) 315-322. San Diego Academic Press

4. Coetzee, M. P., Wingfield, B. D., Harrington, T. C., Steimel, J., Coutinho, T. A. & Wingfield, M. J. 2001 The root rot fungus Armillaria mellea introduced into South Africa by early Dutch settlers. *Molecular Ecology.* **10**, 387-396.

S7: Modified Promega pGEM[®]-T Easy Vector System Protocol

- 1. **Ligation reaction:** Ligation reactions contained 2.5µl 2X Ligation Buffer, 0.5µl T4 DNA Ligase, 0.5µl pGEM[®]-T Easy vector and 1.5µl clean PCR product.
- 2. **Colony Screening:** Colony screening was performed using a colony PCR (conditions described in S2 above). DNA was obtained by using a pipette tip to 'pick' a colony, this was touched onto a replica plate and then placed in the PCR reaction mix. The tip was then removed and the reaction placed in a thermocycler.

S8: Evolutionary models and analysis parameters for phylogenetic analyses

Models of nucleotide substitution used for COI and mtSSU analyses are; (i) a three-parameter model with unequal base frequencies and gamma-distributed rate variation and (ii) a Felsenstein 1981 model with no invariable sites respectively. Node support for neighbour joining analyses was estimated using non-parametric bootstrapping.

The model of nucleotide substitution used for ITS analyses was a Tamura-Nei nucleotide substitution model with no invariable sites. Node support for maximum likelihood analyses was estimated using non-parametric and nearest neighbour interchange – subtree pruning and regrafting bootstrapping. In the Bayesian analysis the Markov chain Monte Carlo was run for 10 million generations, sampled every 100 steps with the first 25% of samples discarded as burnin.

Sample number	mtSSU Haplotype	VCG*	Sampling Location**	Wasp species
37041	1	1.1	203-2	S. noctilio
37023	1	1.1	L22-1	S. nigricornis
36937	1	1.1	202-1	S. noctilio
36993	1	1.1	203-2	S. noctilio
37054	1	1.1	202-1	S. noctilio
37055	1	1.1	203-2	S. noctilio
37063	1	1.2	56-1	S. nigricornis
37020	1	1.2	158-1	S. nigricornis
37066	1	1.3	200-1	S. nigricornis
36965	1	1.4	200-1	S. nigricornis
37003	1	1.5	L6-2	S. noctilio
37006	1	1.6	202-2	S. noctilio
37037	2	2.1	200-1	S. nigricornis
37068	2	2.1	200-2	S. nigricornis
37018	2	2.1	158-2	S. nigricornis
36961	2	2.2	200-1	S. nigricornis
37017	2	2.2	158-2	S. nigricornis
37009	2	2.3	200-2	S. nigricornis
36955	2	2.4	56-1	S. nigricornis
37019	2	2.5	158-1	S. nigricornis
39644	3	3.1	L6-2	S. noctilio
36991	3	3.1	L6-2	S. noctilio
36947	3	3.1	L6-2	S. noctilio
36997	3	3.1	L6-2	S. noctilio
37060	3	3.1	L6-2	S. noctilio
37079	3	3.2	202-2	S. noctilio
37001	3	3.3	L6-2	S. noctilio

S9: Supplementary table 5: Representative Amylostereum areolatum isolates and their VCG groupings

* VCGs are named first according to mtSSU haplotype and second VCG number identified within that haplotype. These numbers are separated by a '.'

**-1 and -2 indicate which tree wasps emerged from at each site

S10: Supplementary Figure 2: (a) Rooted neighbour-joining trees of mitochondrial small subunit gene for fungal species identification. (b) Rooted neighbour-joining cytochrome oxidase *c* subunit 1 gene for wasp species identification. (c) Table of extent of fungal symbiont switching based on wasp and fungal species identification

Figure 2(c)	Number of wasps	Number of wasps carrying incorrect* fungal symbiont	Percentage of symbiont switching
Sirex nigricornis	77	58	75.3
Sirex noctilio	57	2	3.5

*Sirex nigricornis is expected to carry Amylostereum chailletii, and S. noctilio is expected to carry A. areolatum

S11: Supplementary table 6. Accession numbers of previously isolated *Amylostereum areolatum* mtSSU used for identification of mtSSU haplotypes and comparison to previously identified *A. areolatum* multilocus genotypes

Accession number	Species	Location	Figure 1 Reference
HM461091.1	A. chailletii	Canada	Canada-5
HM461087.1	A. areolatum	Canada	Canada-1
HM461086.1	A. areolatum	Canada	Canada-2

AF238459.1	A. chailletii	Canada	Cananda-3
AF238457.1	A. chailletii	Scotland	Scotland-1
AF238447.1	A. areolatum	France	France-1
AF238460.1	A. chailletii	Lithuania	Lithuania
AF238458.1	A. chailletii	Canada	Cananda-4
AF238456.1	A. areolatum	Tasmania	Tasmania
AF238452.1	A. areolatum	Brazil	Brazil-1
AF238446.1	A. areolatum	New Zealand	New Zealand
AF238461.1	A. chailletii	Scotland	Scotland-2

S12: Supplementary figure 3: (a) Unrooted Bayesian inference tree of ITS sequences. (b) Unrooted, Maximum Likelihood tee of ITS sequences. These are condensed trees where nodes with bootstrap values of less than 50% have been collapsed into polytomies.

•	•		
		CMW36972	
		CMW36985	
		CMW37007	
		CMW37008	
		CMW37011	
	77	CMW37014	
		CMW37018	
		CMW37075	
		CMW37085	
		CMW37208	
		CMW37209	
		CMW36964	
		CMW36966	
		CMW36977	
		CMW36978	
		CMW36981	Amylostereum areolatum
· · · · · · · · · · · · · · · · · · ·		CMW36982	
·		CMW36986	
·		CMW36987	
·		CMW36989	
·		CMW36990	
		CMW36991	
		CMW36993	
		CMW36994	
·		CMW36996	
·		CMW36997	
·		CMW36998	
		CMW37000	
·		CMW370001	
·		CMW37002	
		CMW37003	
		CMW37005	
		CMW37006	
		CMW37009	
·		CMW37013	
·		CMW37015	
·		CMW37017	
		CMW37019	
		CMW37020	
		CMW37022	
		CMW37024	

		———— EF032232.1
		———— EB296
	ſ	———— EB297
	-	———— EB303
	-	———— EB309
	-	EB316
	-	EB317
	50	EB318
	53	EB328
	-	EB331
	-	EB334
	-	EB337
		EB347
		EB298
		EB299
		EB300
		EB301
		EB302
		EB304
		EB305
		EB306
		EB307
		EB308
		EB310
		EB311
		EB312
		EB313
		EB314
		EB315
		EB319
		EB321
		EB323
		EB324
		EB325
		EB326
100		EB327 S
100		EB329
		EB333
		EB335
		EB336
		EB338
		EB339
		EB340
		EB341
		———— EB342
		EB343
		EB344
		EB346
		EB348
		EB349

Sirex noctilio

			 EB349	
			EB350	
			 EB351	
			EB356	
			EB374	
			EB389	
			 EB392	
			 EB427	
			 EB411	
			 JQ619796.1	
			 HM114324.1	
			 HM114322.1	
			 HM114320.1	
			HM114316.1	
			 HM114323.1	
			 HM114321.1	
			 HM114319.1	
			 HM114317.1	
			 EF032231.1 _	
			 EB345 -	
			 EB353	
			 EB355	
			EB357	
			ED300 EB350	
			EB360	
			 EB361	
			 EB362	
			 EB363	
	<u> </u>		 EB364	
			 EB365	
			 EB366	
			 EB396	
			HM114332.1	
			 HM114330.1	
	63		HM114328.1	
			HM114333.1	
			HM114336.1	
		61	 HM114334.1	
			 HM114326.1	
			 HM114337.1	
			HM114335.1	
			 HM114327.1	
			 EB367	
			 EB368	
			EB369	
			ED370 EB371	
			 EB372	
			 EB373	
			EB375	
			 EB376	
			 EB377	
			 EB378	
			 EB379	
			 EB380	
			EB381	
			EB383	
			 EB384	
			 EB385	
			 EB386	c
			 EB387	sirex nigricornis
71			 EB388	
			 EB390	
			 EB391	
			 EB393	
			 EB395	
			 EB397	
			 EB398	
			EB399	
			 EB400	
			 EB401	
			 EB402	
			EB403	
			 EB404	
			 ED405	
			 EB408	
			EB409	
			 EB410	
			 EB412	
			 EB413	
			 EB414	
	<u> </u>		 EB415	
			 EB416	
			EB417	
			 ED410	
			 EB420	
			 EB421	
			 EB422	
			 EB423	
			 EB424	
			 EB425	
	<u> </u>		 EB426	
	L		 EB/28	I

100

