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Introduction
Heavy metals comprise a heterogeneous group of elements, some 

of which are essential cofactors for various enzymes, while others are 
non-essential. The former group includes the trace elements cobalt, 
copper, iron, manganese, molybdenum, selenium and zinc. Because 
excessive concentrations of the free metals pose potential health 
risks, their circulating and tissue concentrations are tightly regulated 
through interactions with binding proteins. The latter group includes 
metals such as arsenic, cadmium, lead, mercury, plutonium, tungsten 
and vanadium [1]. These non-essential metals are potent toxins and 
gain access to organisms by virtue of physico-chemical properties, such 
as ionic charge, shared with their essential counterparts [2]. They may 
enter the body through food, water, air, or by absorption through the 
skin following inadvertent occupational exposure in the agricultural, 
manufacturing/industrial settings, or through environmental exposure. 
The manufacturing/industrial setting is the most significant source of 
exposure in adults [3]. 

Notwithstanding their direct cytotoxic effects on eukaryotic cells at 
high concentrations, interactions of non-essential heavy metals at lower 
non-cytotoxic levels with cells of the innate immune system, which 
abound in the airways, skin, gastrointestinal tract, liver, spleen, kidneys 
and circulatory system, may initiate harmful inflammatory responses 
with accompanying organ dysfunction and disease. These potentially 
harmful pro-inflammatory interactions of non-essential heavy metals 
(toxicants), specifically cadmium, lead, mercury, platinum, palladium 
and vanadium, with the cells of the innate immune system, and their 
adverse effects on health, are the topic of this review, which also 
includes cigarette smoking as a cause of exposure to heavy metals [4]. 
Of necessity, a consideration of the pro-inflammatory activities of these 
metals is preceded by a brief consideration of innate cellular defence 
mechanisms.

Innate Immunity
Innate immunity encompasses effector cells and proteins that 

serve as a first line of defence against infectious agents, restraining 
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Abstract
In trace amounts, some heavy metals are essential for optimum health, while exposure to others, which are 

non-essential, presents the potential hazard of acute or chronic organ toxicity. Cadmium, mercury, lead, vanadium, 
platinum and palladium are commonly encountered, non-essential heavy metals which mediate their toxic activities 
by various mechanisms. All have the potential to interact with extracellular and intracellular protein sulfhydryls, 
rendering them not only potentially allergenic, but also predisposing to oxidative stress, while displacement of 
essential elements from their protein carriers may result in deficiency disorders. In addition, several of these metals, 
especially cadmium, palladium, platinum, and vanadium interact pro-oxidatively with the phagocytic cells of the 
innate immune system, potentiating the reactivity and toxicity of phagocyte-derived reactive oxygen species. This 
review is focused on the pro-oxidative/pro-inflammatory interactions of non-essential heavy metals with the cells of 
the innate immune system, a somewhat under-appreciated mechanism of metal induced toxicity.

or, in some cases eliminating, microbial or viral pathogens while the 
host develops an adaptive, antigen-specific immune response [5]. Key 
cellular components of innate immunity include phagocytes such as 
neutrophils and monocytes/macrophages, as well as dendritic cells, 
mast cells, eosinophils, basophils and natural killer cells. Innate defenses 
also encompass physical barriers such as the epithelial and endothelial 
cell linings. Although not strictly classified as being cellular elements of 
the innate immune system, epithelial cells and endothelial cells are key 
orchestrators of both innate and adaptive immune responses.

Phagocytes accomplish their task at sites of infection by 
phagocytosing and killing bacteria and fungi, utilizing an arsenal 
of toxic molecules such as proteolytic enzymes and reactive oxygen 
species (ROS) (Table 1), as well as bacteriocidal proteins, which 
synergize/harmonize to eliminate these pathogens [6-7]. Although 
effective, these antimicrobial systems are indiscriminate and may cause 
significant inflammation-mediated damage to bystander host tissues if 
inappropriately and/or excessively activated. Excessive production of 
ROS may result in damage to lipids, proteins, or DNA, compromising 
cellular function, with resultant cytotoxicity. Because of this, chronic 
oxidative stress has been implicated in a number of human degenerative 
diseases, including cancer, cardiovascular disease, chronic obstructive 
pulmonary disease, atherosclerosis, neurodegenerative diseases 
(Alzheimer’s disease and Parkinson’s disease), rheumatoid arthritis, 
renal diseases, and ageing [8-9].

Cells of the innate immune system such as neutrophils and 
macrophages are also able to synthesize pro- and anti-inflammatory 
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cytokines, growth factors and chemokines that mediate a wide range 
of physiological responses, primarily in host defence. In addition to 
their role in immunity and inflammation, however, overproduction 
of pro-inflammatory cytokines such as interleukin-1β (IL-1β), tumour 
necrosis factor (TNF) and interleukin-6 (IL-6), as well as chemokines 
such as interleukin-8 (IL-8, CXCL8), monocyte chemotactic protein-1 
(MCP-1, CCL2) and macrophage inflammatory protein-1alpha (MIP-
1∝, CCL3) can trigger a variety of pathophysiological conditions [10].

The major mediators of inflammation released by cells of the innate 
immune system and their potential pathological effects are shown in 
Table 2.

Cadmium
Cadmium (Cd) is released into the environment through various 

industrial and domestic activities. Foremost amongst these are the 
combustion of fossil fuels (coal, diesel, gasoline etc.), incineration 
of industrial waste (especially Cd-containing batteries and plastics), 
metal alloy production, electroplating, and manufacture of phosphate 
fertilizers [11]. Cd is also present in tobacco, with each cigarette 
containing 1-3 µg of the metal, predisposing both active and passive 
smokers to the toxic effects of Cd inhalation [11]. In welders, acute 

exposure to Cd may lead to pneumonitis, pulmonary edema and death, 
with a Parkinsonism-like neurological disorder being a late effect of 
acute toxicity [1].

Notwithstanding predisposition to pulmonary disease, renal 
dysfunction is the most common adverse health effect of chronic 
exposure to Cd [12]. 

Cadmium toxicity may also result in osteoporosis by inducing 
renal tubular dysfunction with consequent increased urinary losses 
of calcium and phosphate as well as a direct effect on bone osteoblast 
and osteoclast activity [13-14]. Heavy metal toxicity in the setting of 
iron-deficiency anaemia may significantly increase the risk of infection 
as both iron-deficiency [15] and Cd-toxicity impair host responses to 
infection. Cadmium and zinc compete for carrier molecule binding 
sites on cell membranes and high Cd concentrations antagonize Zinc 
absorption and uptake by cells. Therefore, Cd toxicity may predispose 
affected individuals to zinc deficiency which can disrupt normal 
cellular and immunological functions [16-18].

In addition to direct cytotoxic effects of Cd at high concentrations 
on various cell types, including mononuclear cells and macrophages 
[19-20], a considerable body of evidence exists which implicates harmful 

ABBREVIATION
Cd Cadmium
CdCl2 Cadmium chloride
CdS Cadmium sulphide
Pb Lead
Hg Mercury
HgCl2 Mercury chloride
MeHg Methyl Mercury
MeHgCl Methyl Mercury Chloride
V Vanadium
Pt Platinum
Pd Palladium
ROS Reactive Oxygen Species
O2 

− Superoxide anion
H2O2 Hydrogen Peroxide
HOCl Hypochlorous Acid
OH’ Hydroxyl Radical
NO Nitric Oxide
iNOS Inducible Nitric Oxide Synthase
MMP Matrix Metalloproteinases
LTB4, LTC4 and LTD4 Leukotriene B4, Leukotriene C4 & D4
IL (e.g IL-8) Interleukin (e.g. interleukin-8)
TNF Tumor necrosis factor
MCP-1 Monocyte chemotactic protein-1
MIP-1α Macrophage inflammatory protein-1 alpha
NFκB Nuclear factor kappa B
AP-1 Activation protein-1
JNK c-Jun N-terminal kinase
MEK-1 MAP (Mitogen-Activated Protein) Kinase/ERK (Extracellular Signal-Regulated Kinase) Kinase 1
P38 MAPK p38 mitogen-activated protein kinases
ERK-1 Extracellular Signal-Regulated Kinases 1
PI-3K Phosphatidylinositol-3-Kinase
FMLP N-formyl-methionyl-leucine-phenylalanine
PMA Phorbol-12-myristate-13-acetate
PKC Protein kinase C
PAF Platelet Activating Factor
PGE2 Prostaglandin E 2

Table 1: List of abbreviations.
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pro-oxidative, pro-inflammatory interactions of Cd with neutrophils 
and macrophages in the adverse health effects of environmental and/
or industrial exposure to this metal. With respect to pro-oxidative 
activity, Freitas et al. (2010) reported that exposure of isolated human 
neutrophils to CdCl2 caused increases in the production of ROS, 
specifically O2 

−, H2O2, and HOCl, both spontaneously and following 
activation of the cells with the phorbol ester, phorbol myristate acetate 
(PMA) [21]. The latter is a direct activator of protein kinase C (PKC), 
which in turn activates the superoxide-generating system of phagocytes, 
NADPH oxidase [21]. These findings were confirmed by others and were 
extended to include murine macrophages and macrophage cell lines in 
which exposure of these cells to Cd (10 µM) also resulted in increased 
production of nitric oxide (NO), an activity which was associated with 
both increased activity and synthesis of inducible NO synthase (iNOS) 
[22-24]. Although the exact molecular mechanisms which underpin 
the pro-oxidative interactions of Cd with neutrophils and macrophages 
remain to be conclusively established, it is noteworthy that exposure of 
murine macrophages to Cd at concentrations of 20-500 µM was found 
to increase cytosolic Ca2+ concentrations [25]. Ca2+ is a well-recognized 
second messenger, and increases in the cytosolic concentrations of this 
cation precede and are a prerequisite for receptor-mediated activation 
of NADPH oxidase [26].

Other mechanisms of Cd -mediated pro-oxidative activity include: 
i) inhibition of superoxide dismutase [27]; ii) bonding to sulfhydryl 
groups, depleting glutathione and protein sulfhydryls, thereby 
compromising intracellular anti-oxidative defences [28]; iii) activation 
of 5-lipoxygenase activity, leading to production of the neutrophil/
monocyte chemoattractant, leukotriene B4 (LTB4), which also 
sensitizes these cells for increased activity of NADPH oxidase [29]; and 
iv) oxidative activation of redox-sensitive transcription factors such as 
nuclear factor kappa B (NFκB) and activator protein 1 (AP-1), which, 
in turn, activate the expression of genes encoding pro-inflammatory 
proteins, including iNOS [14,30-32]. 

The harmful pro-oxidative, pro-inflammatory activities of Cd have 
also been demonstrated in animal models of experimental pulmonary 
inflammation. Kataranovski et al. reported that intraperitoneal 
administration of CdCl2 (0.5 – 2 mg/kg body mass) resulted in a 
dose-related elevation in the number of circulating neutrophils, 
as well as those present in lung tissue, which was associated with 
increased: i) adhesive and pro-oxidative activities of these cells; and 
ii) circulating levels of the pro-inflammatory cytokines TNF and 
IL-6, the latter being significantly correlated with the numbers of 

blood and pulmonary neutrophils [33]. In addition, Kirschvink et al. 
[34] reported that repeated (x3 weekly for 3-5 weeks) CdCl2 (0.1%) 
nebulizations resulted in pulmonary inflammation in mice which was 
characterized by increased influx of neutrophils and macrophages in 
the setting of elevated levels of the matrix metalloproteinases-2 and -9. 
Histomorphometric analysis of the lung revealed changes compatible 
with emphysema, which correlated with the activities of the MMPs. 

It is probable that Cd-mediated pulmonary inflammation and 
damage results from the pro-oxidative interactions of the metal with 
alveolar macrophages and other resident cells of the innate immune 
system, resulting in oxidative activation of NFκB and AP-1, leading 
to synthesis of IL-6, IL-8, and TNF [30,35-36]. In this respect it is 
also noteworthy that exposure of a murine macrophage cell line 
to Cd has been reported to activate a Ca2+-ROS-JNK-caspase-3 
intracellular signalling pathway which promotes phosphorylation/
dephosphorylation of JNK and p38 MAPkinase, modulating cellular 
mitochondrial activity and proliferation, leading to apoptosis and 
necrosis [25]. The study by Kirschvink et al. [34] mentioned above is 
clearly compatible with a pathogenetic link between inhalation of Cd in 
cigarette smoke, chronic pulmonary inflammation, and development 
of emphysema. This contention is supported by the observation that 
relative to non-smokers, concentrations of Cd (and strontium) are 
elevated in the blood of cigarette smokers [37]. Furthermore, in a study 
to which 16024 adult humans were recruited, an increasing trend in 
urinary Cd2+ levels from never, through former, to current smokers 
was observed, which was negatively correlated with forced expiratory 
volume in 1 second (FEV1) and the ratio of FEV1 to forced vital capacity 
(FVC), both indicative of airflow obstruction [38].

The pro-oxidative and pro-inflammatory effects of Cd on 
neutrophils and macrophages are depicted in Figure 1. 

Lead
According to Hu [39], the worldwide production of lead (Pb) 

is approximately 5.4 million tons and continues to rise. The major 
use of lead is in pb batteries, accounting for 78% of reported global 
consumption in 2003 [40]. This metal is also used in the production of 
pigments, glazes, solder, plastics, cable sheathing, ammunition, weights, 
fuel additives, and a variety of other products [39]. The predominant 
source of worldwide dispersion of pb into the environment for the 
past 50 years has been the use of pb organic compounds as anti-knock 
additives in motor vehicle fuels [39]. Emissions from this source have, 
however, declined with the phasing out of leaded petrol worldwide. 

Abbreviations: LT: Leukotriene; PGE2: Prostaglandin E2; COPD: Chronic Obstructive Pulmonary Disease; ARDS: Acute Respiratory Distress Syndrome 

Table 2:  Mediators of inflammation released by cells of the innate immune system and their potential pathological effects.

Mediator Consequences of Overproduction
Reactive oxidant species:
O2-, H2O2, HOCl, OH’ 

Damage cellular lipids, proteins and DNA. Implicated in cancer, cardiovascular 
disease, atherosclerosis, neurodegenerative diseases and others [9]. 

Nitric Oxide Synthase-derived Nitrogen Intermediates & Peroxynitrite
Peroxynitrite implicated in cardio-vascular disease, neurodegeneration, diabetes etc. 
[123].

Proteases e.g. serine proteases in the azurophilic granules: Cathepsin G, elastase, 
proteinase 3  

Matrix metalloproteinases e.g. MMP-8 & MMP-9

Degrades matrix proteins such as elastin; implicated in emphysema, chronic 
bronchitis and cystic fibrosis [124].

Cause matrix breakdown in COPD, ARDS, sarcoidosis, and tuberculosis etc [125].

Lipid mediators: LTB4, LTC4,LTD4, Platelet Activating Factor (PAF), PGE2

Overproduction of LTB4 associated with leukocyte recruitment is involved in the 
pathogenesis of inflammatory diseases such as bronchial asthma, rheumatoid 
arthritis, atherosclerosis, and inflammatory bowel disease [126]. LTC4, LTD4 play a 
role in asthma [127].

Cytokines: Pro-inflammatory cytokines e.g. IL-1, IL-6, TNF, IL-12, & anti-
inflammatory cytokines, IL-1 receptor antagonist (IL-1Ra), IL-10

Overproduction of proinflammatory cytokines such as TNF may be involved in septic 
shock, autoimmunity & inflammatory diseases [128].

Chemokines: IL-8, Macrophage Inflammatory Protein(MIP)-1α & β, monocyte 
chemotactic protein-1 (MCP-1)

Overproduction of chemokines such as IL-8 may be involved in inflammatory 
conditions, e.g. COPD, ARDS [129-130].
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Lead is also present in tobacco, and Zielhuis et al. [41] demonstrated 
that blood lead levels in male and female students increased with the 
number of cigarettes smoked per day, although other sources of Pb 
such as exhaust fumes and food may also play a role. Lead levels among 
adults with high second-hand smoke exposure were found to be similar 
to those of smokers [42].

Depending on the dose, pb exposure can cause a wide spectrum 
of health problems, including neurological, cardiovascular, renal, 
gastrointestinal, haematological and reproductive disorders. pb 
accumulates in bone, which may serve as a reservoir for exposure in 
later life [40]. Children are particularly susceptible to lead intoxication, 
while at lower blood lead concentrations various neurological and 
behavioural problems may occur, ranging from a raised hearing 
threshold to a reduction in intelligence quotient (IQ) [43]. 

With respect to interactions with cells of the innate immune 
system, pb has been reported to negatively affect the functions of both 
neutrophils and macrophages. In the case of neutrophils, chemotaxis, 
the generation of ROS, and the killing of Candida albicans were found 
to be decreased in workers occupationally exposed to Pb, even in those 
with blood levels below the currently acceptable biological lower limit 
[44-48]. On the basis of these observations, Quieroz et al. [46] suggested 
that immune dysfunction may be a sensitive indicator of exposure to 
Pb. More recently, Di Lorenzo et al. (2006) reported an association 
between Pb exposure and the numbers of circulating neutrophils, with 
the strongest association being observed in occupationally-exposed 
workers who smoked [49]. This latter observation is not surprising 
given the well-recognized association of smoking with: i) neutrophilia 
[50]; and ii) increased levels of Pb in the blood of smokers as described 
above. Although the authors speculate that increased numbers of 
circulating neutrophils may represent a mechanism to compensate 
for Pb-mediated immune dysfunction, they concede that it is more 
likely to reflect a neuroendocrine response to toxicity/stress. In this 
setting, increased production of endogenous glucocorticoids and 
catecholamines may contribute to both neutrophilia and neutrophil 

dysfunction possibly by interfering with the adhesion of these cells to 
vascular endothelium [49].

In the case of macrophages, Pb, at non-cytotoxic concentrations 
of 0.1-10 µg/ml, has been reported to inhibit the production of NO 
by cytokine-induced cell lines by interfering with induction of iNOS 
at the level of gene transcription [51,52]. Moreover, exposure to Pb, 
at a concentration of 1300 ppm, was found to inhibit the adherence 
of murine peritoneal macrophages to plastic tissue culture dishes, 
which may underpin the inhibitory effects of the metal on the 
migratory responsiveness of these cells [53,54]. These effects of Pb on 
the induction of iNOS and spreading of macrophages are opposite 
to the effects on cytokine production. Flohé et al. [55] observed that 
exposure of murine bone marrow-derived macrophages to Pb (0.2-
20 µM), prior to activation with bacterial lipopolysaccharide, resulted 
in augmentation of production of TNF, IL-6 and IL-12, as well as 
prostaglandin E2, while production of anti-inflammatory IL-10 was 
decreased. More recently, Valentino et al. [56], in a study designed to 
measure the circulating levels of pro- and anti-inflammatory cytokines 
in workers exposed to very low levels of Pb, found significant increases 
in the plasma concentrations of TNF and IL-10 relative to those of non-
exposed control subjects. They reasoned that the Pb-mediated increase 
in IL-10 was a biological, anti-inflammatory strategy to counteract the 
increase in the production of pro-inflammatory TNF [56].

Several mechanisms, including pro-oxidative properties and 
antagonism of the second messenger function of Ca2+ have been 
proposed to explain the modulatory effects of Pb on the function of cells 
of the innate immune system. With respect to pro-oxidative activity, the 
chemical properties of Pb favour interactions with diverse bio-ligands, 
particularly protein sulfhydryls [57]. Increases in Pb-binding proteins, 
as well as in glutathione (GSH), occur soon after metal exposure and 
are believed to protect against Pb toxicity [57]. However, by depleting 
glutathione and protein sulfhydryls, Pb can compromise host anti-
oxidant defences, creating an intracellular environment conducive to 
the oxidative activation of transcription factors such as NFκB, while 
promoting oxidant-mediated inhibition of the protective functions of 
neutrophils and macrophages. 

However, the prevailing theory of Pb-mediated modulation of the 
functions of neutrophils and macrophages is that the metal may affect 
intracellular Ca2+ homeostasis, either by mimicking Ca2+ action and/
or antagonizing Ca2+-dependent cellular functions. Given the critical 
second messenger role of Ca2+, exposure to Pb may affect several 
intracellular signalling pathways, including those involving activation 
of protein kinase C possibly underpinning interference with neutrophil 
and macrophage functions as described above [58].

Mercury
Elemental mercury (Hg) is liquid at room temperature, and in this 

form is less toxic than inorganic or organic bound Hg. Methylmercury 
(MeHg), the most predominant form of organic Hg, is the form that 
most commonly poses a health risk, mainly through fish consumption 
[59]. Between 2700 and 6000 tons of elemental Hg are released into the 
biosphere annually through degassing from the earth’s crust and oceans 
[60,61]. Occupational (chloralkali plants, production of lamps and 
batteries, gold mining, dentistry) and environmental (dental amalgams, 
food) exposures to Hg also occur frequently [62]. According to reports 
“a single dental amalgam filling with a surface area of only 0.4 cm2 is 
estimated to release as much as 15 micrograms of Hg per day primarily 
through mechanical wear and evaporation.” It is also stated that “the 
average individual has eight amalgam fillings and could absorb up to 

Figure 1: The pro-oxidative and pro-inflammatory effects of Cd on neutrophils 
and macrophages.
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120 micrograms of Hg per day from their amalgams” [63,64].

Hg has been found to cause various health problems, including 
neurological, renal, immunological, cardiac, motor, reproductive 
and even genetic disorders [65]. Pre- or post-natal exposure to high 
levels of MeHg causes mental retardation, cerebral palsy, seizures 
and ultimately death [66], while inorganic Hg is known to induce 
autoimmune disease in susceptible rodent strains. Additionally, in 
inbred strains of mice prone to autoimmune disease, Hg can accelerate 
and exacerbate disease manifestations [67]. Metals such as Hg may also 
contribute to the pathogenesis of autoimmune diseases by modulating 
mast cell activity [68].

Hg has been reported to affect the functions of the cells of the 
innate immune system, including neutrophils, moncytes/macrophages, 
natural killer cells and dendritic cells as well as epithelial cells. In the 
case of neutrophils, Jansson et al. [69] reported that exposure of these 
cells to low micromolar (≤5 µM) concentrations of HgCl2 in vitro 
resulted in significant, albeit variable, increases in the production of 
superoxide activated by the chemoattractant, N-formyl-L-methionyl-
L-leucyl-L-phenylalanine, but not with other activators such as PMA or 
opsonized zymosan. At approximately the same concentrations, HgCl2 
and MeHgCl were found to inhibit spontaneous apoptosis of human 
neutrophils in vitro [70], possibly by a mechanism related to induction 
of mild oxidative stress. At higher concentrations, however, the metal 
(in both studies) was found to become abruptly cytotoxic [69,70].

In contrast to the aforementioned studies which addressed the 
effects of short-term exposure to Hg on neutrophil function and 
viability in vitro, prolonged exposure to the metal in the workplace was 
reported to be associated with impairment of neutrophil chemotaxis and 
generation of ROS [71]. These effects persisted following reductions in 
exposure due to improvements in factory hygiene practices, prompting 
the authors to propose that exposure to Hg, even at levels considered to 
be “safe”, may lead to impairment of neutrophil function.

With regard to monocytes/macrophages, electron microscopic 
analysis of cells exposed to MeHg clearly revealed uptake of the metal 
with deposition in lysozomes and dispersal in the cytoplasm and 
nuclei [72]. Functional analysis of macrophages exposed to Hg (1-5 
µM) demonstrated: i) impairment of their phagocytic and migratory 
activities, possibly as a consequence of increased production of ROS 
by metal-exposed cells [72,73]; ii) increased production of LTB4 [74], 
possibly resulting from increased activity of p38 MAPK [75], but not 
NFκB, which was actually decreased [76]; and iii) decreased production 
of NO in the setting of increased synthesis of the cytokines IL-6 and 
TNF, which was associated with increased activity of p38 MAPK, but 
not NFκB [76].

The stimulatory effects of Hg on the production of IL-6 and TNF by 
macrophages are essentially in agreement with the findings of an earlier 
study by Villanueva et al. [36]. These authors reported that exposure 
of human peripheral blood mononuclear leukocytes to HgCl2, as well 
as to CdCl2 as mentioned earlier, resulted in increased production of 
both IL-1β and TNF in the setting of decreased production of anti-
inflammatory IL-10 and IL-1 receptor antagonist. The cytokines 
interferon-γ, IL-4 and IL-17 which typify activation of the Th1, Th2 and 
Th17 sub-populations of CD4+ T cells of the adaptive immune system 
respectively, were also increased following exposure of mononuclear 
leukocytes to HgCl2 [77].

In addition to its effects on neutrophils and monocytes/
macrophages, Hg, as mentioned above, has been reported to modulate 
the functions of natural killer cells, and epithelial cells. In the case of 

the former, dietary intake of MeHg (3.9 µg/gram diet) by mice and rats 
resulted in suppression (42-44%) of the tumoricidal activity of blood 
and splenic natural killer cells, as well as proliferation of the T-cells and 
B-cells of the adaptive immune system [78,79].

More recently, Migdal et al. [80] investigated the effects of 
thimerosal and other Hg-containing compounds on the spontaneous 
expression of surface markers of cell activation, as well as on the 
production of the pro-inflammatory cytokine TNF, and the chemokine 
IL-8 by human monocyte-derived dendritic cells in vitro. The authors 
observed that exposure of the cells to all of these compounds was 
associated with over-expression of CD86 and HLA-DR, both of which 
mediate T-cell activation, as well as increased production of TNF 
and IL-8. From a mechanistic perspective, these pro-inflammatory 
interactions of Hg with dendritic cells were associated with increased 
intracellular oxidative stress, presumably as a consequence of 
interaction of the metal with glutathione and protein sulfhydryls, and 
delayed, oxidant-mediated influx of extracellular Ca2+ [80,81]. Both of 
these events (increased intracellular levels of ROS and associated Ca2+ 
influx) result in activation of transcription factors and expression of 
genes encoding pro-inflammatory proteins.

Epithelial cells are also prone to metal-mediated oxidative stress 
as described by Han et al. [82]. These authors reported that exposure 
of the bronchial epithelial cell line (BEAS-2B) to Hg or, as mentioned 
earlier to Cd in particular, at concentrations of 0-50 µM, resulted in 
dose-related oxidative stress due to increased intracellular generation of 
the ROS, superoxide, H2O2 and hydroxyl radical [82]. Oxidative stress 
resulted from metal-mediated depletion of intracellular sulfhydryls, 
resulting in cytotoxicity.

The pro-oxidative, pro-inflammatory and cytotoxic properties 
of Hg are clearly similar to those of Cd and Pb, resulting from the 
interactions of the metal with, and depletion, of intracellular sulfhydryl 
groups [83]. Oxidative stress, in turn, leads to influx of Ca2+ and 
activation of p38 MAPK, resulting in production of pro-inflammatory 
cytokines by cells of the innate immune system [25]. Excessive and 
prolonged oxidative stress, however, results in oxidative inactivation 
of protective functions such as adherence, migration and phagocytosis 
in the case of neutrophils and monocytes/macrophages, and ultimately 
to cell death by apoptosis due to p38 MAPK-mediated activation of 
caspase 3 and oxidant-mediated necrosis [25]. 

Vanadium
Metallic vanadium (V) does not exist in nature; rather, V 

compounds exist in oxidation states ranging from -1 to +5, the most 
common valences being +3, +4, and +5, with quadrivalent salts 
being the most stable. Occupational exposure to V is common in the 
petrochemical, mining, steel, and utilities industries; fossil fuels and 
some ores contain significant amounts of this metal [84]. Inhalation is 
the most prevalent route of human exposure to insoluble pentavalent 
V oxides and soluble salts in urban/occupational settings. Workers 
exposed to V-bearing dusts or fumes display an increased incidence 
of several lung diseases (e.g., asthma, bronchitis, pneumonia) [85]. 
Exposure to V can also take place through the smoking of cigarettes. 
The concentration of V in cigarettes ranges between 0.49 –5.33 mg/g 
(average: 1.11 mg/cigarette). About 60% of the vanadium remains in 
the ash, 8.3% in the cigarette filter and 31.3% in the smoke [4,86]. 

Like the other metals, V has been found to interact pro-oxidatively 
with cells of the innate immune system, including neutrophils, 
macrophages, basophils, as well as epithelial cells. In the case of 
neutrophils, Fickl et al. [87] reported that exposure of activated human 
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neutrophils to V (25 μM) in the +2, +3 and +4, but not the +5, valence 
states promoted hydroxyl radical formation by these cells. This was 
achieved by a Fenton reaction via interaction of the metal with H2O2 
generated by active neutrophils. This mechanism may, however, 
be of greater relevance to macrophages as these cells do not possess 
myeloperoxidase, negating competition between the metal and the 
enzyme for H2O2. At much higher concentrations (50-1000 μM) than 
those used in the aforementioned study, Grabowski et al. [88] reported 
that exposure of rat alveolar macrophages to sodium metavanadate 
(+5 valence state) resulted in a generalized, dose-related (from 50 
μM) increase in the intracellular generation of ROS. Exposure of the 
cells to the metal resulted in the activation of NADPH oxidase, as 
well as tyrosine phosphorylation of cellular proteins [88]. The authors 
propose that a mechanism involving V-mediated generation of ROS 
in macrophages, and possibly other cell types such as epithelial cells, 
may result in oxidant-mediated activation of intracellular signalling 
cascades, leading to synthesis of pro-inflammatory cytokines/
chemokines, which, in turn, promote the airway inflammation which 
accompanies inhalation of the metal. This contention was confirmed 
in a murine model of experimental airway inflammation in which 
aspiration of V(+5) into the pulmonary airspace was accompanied by 
influx of neutrophils, which was associated with increased production 
of ROS (superoxide, hydroxyl radical, H2O2) by alveolar macrophages 
ex vivo [89], as well as increased expression of genes encoding 
neutrophil and monocyte chemoattractants [84,90,91].

In addition to alveolar macrophages, airway epithelial cells are also 
involved in V-mediated airways inflammation, again as a consequence 
of intracellular oxidative stress. In an earlier study, Jaspers et al. [92] 
reported that exposure of primary human bronchial epithelial cells to V 
(+4, 12-50 μM) resulted in increased transcription of the IL-8 gene, as 
well as synthesis of the protein as a consequence of activation of NFκB. 
These observations are in keeping with the study of Zhang et al. [93] in 
which it was reported that exposure of the human lung epithelial cell 
line, A549, to V (+5, 100 μM) resulted in intracellular generation of 
ROS (superoxide, hydroxyl radical, H2O2).

In the case of human basophils, Kitani and co-workers reported 
that exposure of these cells, as well as rat mast cells and basophilic 
leukaemia cells to V in the +4 and +5 valence states in combination 
with H2O2 (1 mM), but not the individual agents, caused the release 
of histamine, which was associated with increased intracellular Ca2+ 
levels, extensive protein tyrosine phosphorylation, and morphological 
changes. The authors proposed that V in the presence of H2O2 may 
exacerbate allergic reactions [94].

With respect to cellular signalling and activation of transcription 
factors, V compounds have been found to activate many key effector 
proteins of the signalling pathways including AP-1, MEK-1, ERK-1, 
JNK-1, PI-3K and NF-κB [95,96]. 

Platinum Group Metals: Platinum and Palladium
Palladium, platinum, rhodium, ruthenium, iridium and 

osmium form a group of elements referred to as the platinum group 
metals (PGMs). The increasing use of platinum group metals in 
vehicle catalytic converters leads to the emission of PGMs into the 
environment, while several other applications (e.g. industrial, jewelry, 
anticancer drugs, etc.), can also result in exposure to these metals [97]. 
They are also potent allergens and sensitisers, and are associated with 

asthma, nausea, increased hair loss, increased spontaneous abortion, 
dermatitis and other health problems in humans [98].

Platinum (Pt) and palladium (Pd) have been reported to affect the 
functions of human neutrophils and ciliated respiratory epithelial cells. 
In the case of neutrophils, both metals, but not rhodium or osmium, 
were found to potentiate the reactivity, as opposed to the generation of 
neutrophil-derived oxidants [99]. The potential health risk of these pro-
oxidative interactions of the metals with neutrophils was demonstrated 
in a study in which alpha-1-proteinase inhibitor, the major antagonist of 
neutrophil elastase, was exposed to activated neutrophils in the absence 
or presence of Pt or Pd. Exposure to neutrophils in the presence of the 
metals significantly increased the magnitude of oxidative inactivation 
of the elastase-inhibitory capacity of alpha-1-proteinase inhibitor. If 
operative in vivo, these pro-oxidative interactions of Pd and Pt with 
neutrophils in the airways may predispose to pulmonary dysfunction 
in occupationally- and possibly environmentally-exposed individuals 
[99]. 

This latter contention is supported by three additional studies. 
Firstly, platinum in the +2 and +4 oxidation states was found to 
increase ROS production by the BEAS-2B bronchial epithelial cell line 
[100]. Secondly, in a study designed to investigate the role of metals 
in sino-nasal inflammation in individuals environmentally exposed to 
dense motor vehicle traffic it was found that platinum levels in the nasal 
lavage correlated with neutrophilic inflammation, as well as epithelial 
shedding [101]. Thirdly, Feldman et al. [102] reported that exposure 
of nasal ciliated epithelium to platinic chloride resulted in slowing of 
ciliary beating and damage to the structural integrity of the cells. These 
effects were enhanced in the presence of neutrophils and partially 
attenuated by catalase, confirming the involvement of neutrophil-
derived ROS in platinum-mediated dysfunction of ciliated respiratory 
epithelium [102]. 

A summary of the macrophage- and neutrophil-derived 
inflammatory mediators which are increased following exposure to 
heavy metals is shown in Table 3.

Heavy Metals and Predisposition to Infection
Cigarette smoking, as mentioned earlier, is a well-documented cause 

of exposure to heavy metals such as Cd, Pb and V, and a recognised risk 
for development of respiratory bacterial infection including tuberculosis 
and severe pneumococcal disease [103-105]. Moreover, cigarette smoke 
exposure has also been reported to induce the formation of biofilm by 
various common respiratory and oral pathogens [106,107]. Encasement 
in biofilm, a self-generated extracellular polymer matrix, is a survival 
strategy utilised by bacteria to promote persistence by evasion of both 
host defences and antibiotics, and has been implicated in 60-80% of all 
microbial infections [108]. Although the exact components of cigarette 
smoke which promote biofilm formation have not been established, it 
is noteworthy that nickel, which like Cd, Pb and V is also present in 
tobacco has been reported to promote biofilm formation by Escherichia 
coli in vitro [109,110]. Alternative sources of exposure to Cd, Pb and V 
include industrial and environmental pollution, high risk occupations 
and contaminated food such as fish [111,112].

As mentioned earlier, heavy metals such as Pb and Hg may 
predispose to infection by promoting oxidative inhibition of the 
protective functions of neutrophils and monocytes/macrophages. 
Exposure to Pd may also compromise innate host defences, albeit by 
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an unusual mechanism involving the inactivation of the neutrophil/
monocyte chemoattractants, IL8 and the complement cleavage product, 
C5a. Brief exposure to the metal (25 μM) resulted in either partial (IL-
8) or complete attenuation (C5a) of both the Ca2+-mobilizing and 
chemotactic activities of the chemoattractants for neutrophils [113].

Heavy Metals and Respiratory Disease
Exposure to numerous metals may injure the lung directly or via 

interaction with cells of the innate immune system. Metal-induced 
injury may involve the airways, alveoli or interstial tissues of the lung 
or predispose subjects to bronchial carcinomas. Airway diseases such 
as bronchitis and bronchiolitis may occur following exposure to metal 
fumes containing Cd or Hg [114]. Chronic cadmium exposure may cause 
emphysema by inhibiting the synthesis of plasma α1-antitrypsin which 
predisposes to oxidant-mediated tissue injury. Furthermore, exposure 
to cadmium fumes has been reported to accelerate the progression 
of emphysema [115]. Not withstanding instead of Non withstanding  
the mechanisms described above, metals such as platinum, may act as 
haptens inducing IgE synthesis which, in susceptible individuals may 
lead to occupational asthma [116].

Metal fume fever is an acute inflammatory response triggered 
by pulmonary macrophages following exposure to fumes containing 
metal oxides such as cadmium oxide. Welders are at increased risk and 
symtoms such as fever, malaise, myalgia, dyspnea and cough begin 
about 4 – 8 hours after exposure. Bronchial lavage fluid contains high 
concentrations of tumour necrosis factor-alpha, interleukin-6 and 
interleukin-8 as well as neutrophils. The course of the illness is self-
limiting over 48 hours [116].

A severe form of acute lung injury manifesting as pneumonitis or 
the acute respiratory distress syndrome (ARDS) known as acute metal 
fume toxicity may occur following heavy exposure to Cd[117,118] and 
Hg [114]. These metals are cytotoxic and alveolar damage results in 
acute lung injury which may progress to respiratory distress.

Mercury in its metallic form may reach the lungs via embolization 
from the venous system and has been reported in intravenous drug users 
and in some cases of attempted suicide [119]. An acute inflammatory 

reaction is elicited in the lung in the form of a foreign body giant 
cell reaction. Interstitial lung fibrosis may follow the inflammatory 
response [120].

The carcinogenic potential of metals such as Cd [121] and arsenic 
[122] may increase the risk of bronchus carcinoma. Smelter workers 
exposed to these agents were more likely to develop lung cancer. 
Concomitant exposure to tobacco smoke may accentuate the risk of a 
pulmonary malignancy.

Conclusion
To minimize the risk of inflammation-mediated tissue damage to 

bystander tissues, activation of the cells of the innate immune system 
should be efficient and transient. Occupational and environmental 
exposure to heavy metals, especially Cd, Pt and V is, however, an 
important cause of inappropriate activation of these cells, predisposing 
to oxidant-and protease-mediated tissue damage. Cigarette smoking is 
a major, albeit eminently avoidable risk, which results in simultaneous 
exposure to multiple heavy metal toxins and may be compounded 
both by occupation and proximity to combustion of fossil fuels in the 
environmental setting. In these latter settings, in which avoidance may 
be difficult, frequent monitoring and early recognition of symptoms of 
metal- associated toxicity is recommended, with consideration given 
to the implementation of anti-inflammatory/anti-oxidative therapy 
where necessary.
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